Web-based applications greatly increase information availability and ease of access, which is optimal for public information. The distribution and sharing of information via the Web that must be accessed in a selective way, such as electronic commerce transactions, require the definition and enforcement of security controls, ensuring that information will be accessible only to authorized entities. Different approaches have been proposed that address the problem of protecting information in a Web system. However, these approaches typically operate at the file-system level, independently of the data that have to be protected from unauthorized accesses. Part of this problem is due to the limitations of HTML, historically used to design Web documents. The extensible markup language (XML), a markup language promoted by the World Wide Web Consortium (W3C), is de facto the standard language for the exchange of information on the Internet and represents an important opportunity to provide fine-grained access control. We present an access control model to protect information distributed on the Web that, by exploiting XML's own capabilities, allows the definition and enforcement of access restrictions directly on the structure and content of the documents. We present a language for the specification of access restrictions, which uses standard notations and concepts, together with a description of a system architecture for access control enforcement based on existing technology. The result is a flexible and powerful security system offering a simple integration with current solutions.
The impact of privacy requirements in the development of modern applications is increasing very quickly. Many commercial and legal regulations are driving the need to develop reliable solutions for protecting sensitive information whenever it is stored, processed, or communicated to external parties. To this purpose, encryption techniques are currently used in many scenarios where data protection is required since they provide a layer of protection against the disclosure of personal information, which safeguards companies from the costs that may arise from exposing their data to privacy breaches. However, dealing with encrypted data may make query processing more expensive.In this article, we address these issues by proposing a solution to enforce the privacy of data collections that combines data fragmentation with encryption. We model privacy requirements as confidentiality constraints expressing the sensitivity of attributes and their associations. We then This article extends the previous work by the authors appeared under the title Fragmentation and Encryption to Enforce Privacy in Data Storage in 22:2 • V. Ciriani et al.use encryption as an underlying (conveniently available) measure for making data unintelligible while exploiting fragmentation as a way to break sensitive associations among attributes. We formalize the problem of minimizing the impact of fragmentation in terms of number of fragments and their affinity and present two heuristic algorithms for solving such problems. We also discuss experimental results, comparing the solutions returned by our heuristics with respect to optimal solutions, which show that the heuristics, while guaranteeing a polynomial-time computation cost are able to retrieve solutions close to optimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.