We monitor how destructive interference of undesired phonon frequency components shapes a quasi-monochromatic hypersound wavepacket spectrum during its local real-time preparation by a nanometric transducer and follow the subsequent decay by nonlinear coupling. We prove each frequency component of an optical supercontinuum probe to be sensitive to one particular phonon wavevector in bulk material and cross-check this by ultrafast x-ray diffraction experiments with direct access to the lattice dynamics. Establishing reliable experimental techniques with direct access to the transient spectrum of the excitation is crucial for the interpretation in strongly nonlinear regimes, such as soliton formation.
The assembly of polyelectrolytes and gold nanoparticles yields stratified multilayers with very low roughness and high structural perfection. The films are prepared by spin-assisted layer-by-layer self-assembly (LbL) and are characterized by X-ray reflectivity (XRR), UV-vis spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM). Typical structures have four repeat units, each of which consists of eight double layers (DL) of poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride), one monolayer of gold nanoparticles (10 nm diameter), and another layer of poly(allylamine hydrochloride). XRR scans show small-angle Bragg peaks up to seventh order, evidencing the highly stratified structure. Pronounced Kiessig fringes indicate a low global roughness, which is confirmed by local AFM measurements. TEM images corroborate the layered structure in the growth direction and nicely show the distinct separation of the individual particle layers. An AFM study reveals the lateral gold particle distribution within one individual particle layer. Interestingly, the spin-assisted deposition of polyelectrolytes reduces the roughness induced by the particle layers, leading to self-healing of roughness defects and a rather perfect stratification.
When gold nanoparticles are covered with nanometric layers of transparent polyelectrolytes, the plasmon absorption spectrum A(λ) increases by a factor of approximately three and shifts to the red. These modifications of dissipative experimental observables stop when the cover layer thickness approaches the particle diameter. Spectral modifications of dispersive parameters like the reflection R, however, keep changing with increasing cover layer thickness. The shift of the plasmon resonance caused by two interacting particle layers is studied as a function of the separating distance between the two layers. We discuss these observations in the context of an effective medium theory and conclude that it can only be applied for a layer thickness on the order of the particle diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.