The antioxidant diphenylamine (DPA) is used in fruit-packaging plants for the control of the physiological disorder apple scald. Its use results in the production of DPA-contaminated wastewater which should be treated before finally discharged. Biological treatment systems using tailored-made microbial inocula with specific catabolic activities comprise an appealing and sustainable solution. This study aimed to isolate DPA-degrading bacteria, identify the metabolic pathway of DPA and evaluate their potential for future implementation in bioremediation and biodepuration applications. A Pseudomonas putida strain named DPA1 able to rapidly degrade and utilize DPA as the sole C and N source was enriched from a DPA-contaminated soil. The isolated strain degraded spillage-level concentrations of DPA in liquid culture (2000 mg L(-1)) and in contaminated soil (1000 mg kg(-1)) and metabolized DPA via the transient formation of aniline and catechol. Further evidence for the bioremediation and biodepuration potential of the P. putida strain DPA1 was provided by its capacity to degrade the post-harvest fungicide ortho-phenylphenol (OPP), concurrently used by the fruit-packaging plants, although at slower rates and DPA in a wide range of pH (4.5-9) and temperatures (15-37 °C). These findings revealed the high potential of the P. putida strain DPA1 for use in future soil bioremediation strategies and/or as start-up inocula in wastewater biodepuration systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.