We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or reflectance properties. The objects exhibit symmetries and mutual similarities in shape and/or size. Compared to other datasets, a unique property is that some of the objects are parts of others. The dataset includes training and test images that were captured with three synchronized sensors, specifically a structured-light and a time-of-flight RGB-D sensor and a high-resolution RGB camera. There are approximately 39K training and 10K test images from each sensor. Additionally, two types of 3D models are provided for each object, i.e. a manually created CAD model and a semi-automatically reconstructed one. Training images depict individual objects against a black background. Test images originate from twenty test scenes having varying complexity, which increases from simple scenes with several isolated objects to very challenging ones with multiple instances of several objects and with a high amount of clutter and occlusion. The images were captured from a systematically sampled view sphere around the object/scene, and are annotated with accurate ground truth 6D poses of all modeled objects. Initial evaluation results indicate that the state of the art in 6D object pose estimation has ample room for improvement, especially in difficult cases with significant occlusion. The T-LESS dataset is available online at cmp.felk.cvut.cz/t-less. The visual appearance of a texture-less object is dominated by its global shape, color, reflectance properties, and the configuration of light sources. The lack of texture implies that the object cannot be reliably recognized with traditional techniques relying on photometric local patch detectors and descriptors [9,31]. Instead, recent approaches that can deal with texture-less objects have focused on local 3D feature description [33,51,19], and semi-global or arXiv:1701.05498v1 [cs.CV]
The Microsoft Kinect camera is becoming increasingly popular in many areas aside from entertainment, including human activity monitoring and rehabilitation. Many people, however, fail to consider the reliability and accuracy of the Kinect human pose estimation when they depend on it as a measuring system. In this paper we compare the Kinect pose estimation (skeletonization) with more established techniques for pose estimation from motion capture data, examining the accuracy of joint localization and robustness of pose estimation with respect to the orientation and occlusions. We have evaluated six physical exercises aimed at coaching of elderly population. Experimental results present pose estimation accuracy rates and corresponding error bounds for the Kinect system.
Although the positive effects of exercise on the well-being and quality of independent living for older adults are well-accepted, many elderly individuals lack access to exercise facilities, or the skills and motivation to perform exercise at home. To provide a more engaging environment that promotes physical activity, various fitness applications have been proposed. Many of the available products, however, are geared toward a younger population and are not appropriate or engaging for an older population. To address these issues, we developed an automated interactive exercise coaching system using the Microsoft Kinect. The coaching system guides users through a series of video exercises, tracks and measures their movements, provides real-time feedback, and records their performance over time. Our system consists of exercises to improve balance, flexibility, strength, and endurance, with the aim of reducing fall risk and improving performance of daily activities. In this paper, we report on the development of the exercise system, discuss the results of our recent field pilot study with six independently-living elderly individuals, and highlight the lessons learned relating to the in-home system setup, user tracking, feedback, and exercise performance evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.