2-Pyridylmethylimidazolium salts and IrH5(PPh3)2 give an [(N-C)IrH2(PPh3)2]+ species with the imidazole ring bound in the 'wrong way': at C-5, not at the expected C-2.
Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions.
We show that imidazolium salts do not always give normal or even aromatic carbenes on metalation, and the chemistry of these ligands can be much more complicated than previously thought. N,N'-disubstituted imidazolium salts of type [(2-py)(CH(2))(n)(C(3)H(3)N(2))R]BF(4) react with IrH(5)(PPh(3))(2) to give N,C-chelated products (n = 0, 1; 2-py = 2-pyridyl; C(3)H(3)N(2) = imidazolium; R = mesityl, n-butyl, i-propyl, methyl). Depending on the circumstances, three types of kinetic products can be formed: in one, the imidazole metalation site is the normal C2 as expected; in another, the metalation occurs at the abnormal C4 site; and in the third, C4 metalation is accompanied by hydrogenation of the imidazolium ring. The bonding mode is confirmed by structural studies, and spectroscopic criteria can also distinguish the cases. Initial hydrogen transfer can take place from the metal to the carbene to give the imidazolium ring hydrogenation product, as shown by isotope labeling; this hydrogen transfer proves reversible on reflux when the abnormal aromatic carbene is obtained as final product. Care may therefore be needed in the future in verifying the structure(s) formed in cases where a catalyst is generated in situ from imidazolium salt and metal precursor.
Air and thermally stable palladium(II) complexes of CNC and CCC bis-carbene pincer ligands have
a twisted conformation and catalyze Heck olefination of
activated aryl chlorides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.