Although the increasing prevalence of thyroid nodular disease (TND) has been partially attributed to the more frequent usage of improved diagnostics, environmental factors, such as exposures to thyroid-disrupting chemicals may contribute to TND and altered thyroid function. We investigated the association between exposures to bisphenol A (BPA), its chlorinated derivatives (ClxBPA), and bisphenol F (BPF) with TND and thyroid measures in adult women. A case-control study in Cyprus and Romania (n = 212) was conducted, where cases were those with thyroid nodules (diameter >3mm), and controls without nodules. Serum TSH and free thyroxine and urinary levels of BPA, BPF and ClxBPA were measured using immunoassays and tandem mass spectrometry, respectively. The association between exposures to BPA compounds and TND, adjusting for age, BMI, thyroid hormones and urinary iodine was assessed using logistic regression. Linear regression was used to explore associations between urinary BPA, BPF and ClxBPA and serum thyroid hormones. With the exception of a chlorinated BPA compound (30%), the rest of bisphenols were quantified in 100% of urine samples. A positive and significant (p<0.05) association was observed between urinary BPA and serum TSH that remained after adjusting for urinary creatinine, age, BMI, study site and disease status; there was no significant association between BPF or ClxBPA with TSH. None of the BPA compounds were associated with higher odds of TND. Our study found associations of urinary BPA with TSH but not with BPF or ClxBPA. A larger study would be justified.
Little is known about the real everyday exposure of children in Europe to extremely low-frequency magnetic fields (ELF-MFs). The aims of this study are to (i) assess personal ELF-MF exposure in children; (ii) to identify factors determining personal and bedroom ELF-MF exposure measurements in children; (iii) to evaluate the reproducibility of exposure summary measures; and (iv) to compare personal with bedroom measurements. In Switzerland and Italy, 172 children aged between 5 and 13 years were equipped with ELF-MF measurement devices (EMDEX II, measuring 40-800 Hz) during 24-72 h twice, in the warm and the cold season. In addition, 24-h measurements were taken in the bedroom of children. In our study, sample geometric mean ELF-MF exposure was 0.04 μT for personal and 0.05 μT for bedroom measurements. Living within 100 m of a highest voltage power line increased geometric mean personal exposure by a factor of 3.3, and bedroom measurements by a factor 6.8 compared to a control group. Repeated measurements within the same subject showed high reproducibility for the geometric mean (Spearman's correlation 0.78 for personal and 0.86 for bedroom measurements) but less for the 95th and 99th percentile of the personal measurements (≤0.42). Spearman's correlation between bedroom and personal exposure was 0.86 for the geometric mean but considerably lower for the 95th and 99th percentiles (≤0.60). Most previous studies on ELF-MF childhood leukaemia used mean bedroom exposure. Our study demonstrates that geometric mean bedroom measurements is well correlated with personal geometric mean exposure, and has high temporal reproducibility.
This paper describes, for the first time, the procedure for the full design, calibration, uncertainty analysis, and practical application of a personal, distributed exposimeter (PDE) for the detection of personal exposure in the Global System for Mobile Communications (GSM) downlink (DL) band around 900 MHz (GSM 900 DL). The PDE is a sensor that consists of several body-worn antennas. The on-body location of these antennas is investigated using numerical simulations and calibration measurements in an anechoic chamber. The calibration measurements and the simulations result in a design (or on-body setup) of the PDE. This is used for validation measurements and indoor radio frequency (RF) exposure measurements in Ghent, Belgium. The main achievements of this paper are: first, the demonstration, using both measurements and simulations, that a PDE consisting of multiple on-body textile antennas will have a lower measurement uncertainty for personal RF exposure than existing on-body sensors; second, a validation of the PDE, which proves that the device correctly estimates the incident power densities; and third, a demonstration of the usability of the PDE for real exposure assessment measurements. To this aim, the validated PDE is used for indoor measurements in a residential building in Ghent, Belgium, which yield an average incident power density of 0.018 mW/m².
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.