Human DNA profiling using PCR at polymorphic short tandem repeat (STR) loci followed by capillary electrophoresis (CE) size separation and length-based allele typing has been the standard in the forensic community for over 20 years. Over the last decade, Next-Generation Sequencing (NGS) matured rapidly, bringing modern advantages to forensic DNA analysis. The MiSeq FGx™ Forensic Genomics System, comprised of the ForenSeq™ DNA Signature Prep Kit, MiSeq FGx™ Reagent Kit, MiSeq FGx™ instrument and ForenSeq™ Universal Analysis Software, uses PCR to simultaneously amplify up to 231 forensic loci in a single multiplex reaction. Targeted loci include Amelogenin, 27 common, forensic autosomal STRs, 24 Y-STRs, 7 X-STRs and three classes of single nucleotide polymorphisms (SNPs). The ForenSeq™ kit includes two primer sets: Amelogenin, 58 STRs and 94 identity informative SNPs (iiSNPs) are amplified using DNA Primer Set A (DPMA; 153 loci); if a laboratory chooses to generate investigative leads using DNA Primer Set B, amplification is targeted to the 153 loci in DPMA plus 22 phenotypic informative (piSNPs) and 56 biogeographical ancestry SNPs (aiSNPs). High-resolution genotypes, including detection of intra-STR sequence variants, are semi-automatically generated with the ForenSeq™ software. This system was subjected to developmental validation studies according to the 2012 Revised SWGDAM Validation Guidelines. A two-step PCR first amplifies the target forensic STR and SNP loci (PCR1); unique, sample-specific indexed adapters or "barcodes" are attached in PCR2. Approximately 1736 ForenSeq™ reactions were analyzed. Studies include DNA substrate testing (cotton swabs, FTA cards, filter paper), species studies from a range of nonhuman organisms, DNA input sensitivity studies from 1ng down to 7.8pg, two-person human DNA mixture testing with three genotype combinations, stability analysis of partially degraded DNA, and effects of five commonly encountered PCR inhibitors. Calculations from ForenSeq™ STR and SNP repeatability and reproducibility studies (1ng template) indicate 100.0% accuracy of the MiSeq FGx™ System in allele calling relative to CE for STRs (1260 samples), and >99.1% accuracy relative to bead array typing for SNPs (1260 samples for iiSNPs, 310 samples for aiSNPs and piSNPs), with >99.0% and >97.8% precision, respectively. Call rates of >99.0% were observed for all STRs and SNPs amplified with both ForenSeq™ primer mixes. Limitations of the MiSeq FGx™ System are discussed. Results described here demonstrate that the MiSeq FGx™ System meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities.
Strong enhancement of the two-photon absorption of organic molecules near silver nanoparticle fractal clusters has been observed and has been exploited to yield composite materials with very strong two-photon absorption and two-photon-excited fluorescence properties. Measurements on cluster films coated with chromophoric polymer or with thiol-bound chromophores give spatially-averaged enhancements of 1000 and 20 000, respectively. Two-photon fluorescence microscopy studies show that the enhancements are spatially inhomogeneous, with peak-enhancement factors of g 10 000 (polymer/cluster) and g 160 000 (thiol chromophore/cluster), and excitation frequency dependent. These results are in accord with theoretical predictions of local-field effects due to strong localization of collective plasmon modes in fractal metal clusters, and demonstrate an approach to ultrasensitive two-photon processes.
The one- and two-photon spectroscopic properties of four symmetrically substituted donor−acceptor−donor distyrylbenzenes with either di-n-butyl- or diphenylamino donor groups and cyano acceptor groups are reported. It has been found that the position of the substitution of the electron-withdrawing cyano groups on the central phenylene ring as compared to the vinylene bond strongly affects the observed properties. In particular, the molecules with cyano substitution on the α-carbon of the vinylene linkage are characterized by weak fluorescence, short fluorescence lifetimes, and two-photon cross sections (δ) that are comparable to analogous molecules with no acceptor groups. In contrast, the molecules with acceptor substitution on the central phenylene ring are strongly fluorescent and have δ values roughly twice those of the vinyl-substituted molecules. These results are discussed in terms of the larger deviation of the conjugated backbone from planarity and the smaller distance between the donors and acceptors when the cyano groups are substituted on the vinylene carbon rather than the central phenylene ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.