Influenza viruses (IV) cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs) has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM)-expressed IFN-β significantly contributes to IV-induced alveolar epithelial cell (AEC) injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis-inducing ligand (TRAIL). Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-β release in AM in a protein kinase R- (PKR-) and NF-κB-dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-β and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-β-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury.
Cystic fibrosis (CF) is the most common lethal inherited disease in Caucasians and is caused by mutations in the CFTR gene. The disease is incurable and medical treatment is limited to the amelioration of symptoms or secondary complications. A comprehensive understanding of the disease mechanisms and the development of novel treatment options require appropriate animal models. Existing CF mouse models fail to reflect important aspects of human CF. We thus generated a CF pig model by inactivating the CFTR gene in primary porcine cells by sequential targeting using modified bacterial artificial chromosome vectors. These cells were then used to generate homozygous CFTR mutant piglets by somatic cell nuclear transfer. The homozygous CFTR mutants lack CFTR protein expression and display severe malformations in the intestine, respiratory tract, pancreas, liver, gallbladder, and male reproductive tract. These phenotypic abnormalities closely resemble both the human CF pathology as well as alterations observed in a recently published CF pig model which was generated by a different gene targeting strategy. Our new CF pig model underlines the value of the CFTR-deficient pig for gaining new insight into the disease mechanisms of CF and for the development and evaluation of new therapeutic strategies. This model will furthermore increase the availability of CF pigs to the scientific community.
Recent studies have identified members of the CLCA (chloride channels, calcium-activated) gene family as potential modulators of the cystic fibrosis (CF) phenotype, but differences between the human and murine CLCA genes and proteins may limit the use of murine CF models. Recently established pig models of CF are expected to mimic the human disease more closely than the available mouse models do. Here, we characterized the porcine CLCA gene locus, analyzed the expression pattern and protein processing of pCLCA1, and compared it to its human ortholog, hCLCA1. The porcine CLCA gene family is located on chromosome 4q25, with a broad synteny with the human and murine clca gene loci, except for a pig-specific gene duplication of pCLCA4. Using pCLCA1-specific antibodies, the protein was immunohistochemically localized in mucin-producing cells, including goblet cells and mucinous glands in the respiratory and alimentary tracts. Similar to hCLCA1, biochemical characterization of pCLCA1 identified a secreted soluble protein that could serve as an extracellular signaling molecule or functional constituent of the protective mucous layers. The results suggest that pCLCA1 shares essential characteristics of hCLCA1, supporting the pig model as a promising tool for studying the modulating role of pCLCA1 in the complex pathology of CF.
Severe pulmonary haemorrhage is a rare necropsy finding in dogs but the leptospiral pulmonary haemorrhagic syndrome (LPHS) is a well recognized disease in humans. Here we report a pulmonary haemorrhagic syndrome in dogs that closely resembles the human disease. All 15 dogs had massive, pulmonary haemorrhage affecting all lung lobes while haemorrhage in other organs was minimal. Histologically, pulmonary lesions were characterized by acute, alveolar haemorrhage without identifiable vascular lesions. Seven dogs had mild alveolar wall necrosis with hyaline membranes and minimal intraalveolar fibrin. In addition, eight dogs had acute renal tubular necrosis. Six dogs had a clinical diagnosis of leptospirosis based on renal and hepatic failure, positive microscopic agglutination test (MAT) and/or positive blood/urine Leptospira-specific PCR. Leptospira could not be cultured post mortem from the lungs or kidneys. However, Leptospira-specific PCR was positive in lung, liver or kidneys of three dogs. In summary, a novel pulmonary haemorrhagic syndrome was identified in dogs but the mechanism of the massive pulmonary erythrocyte extravasation remains elusive. The lack of a consistent post mortem identification of Leptospira spp. in dogs with pulmonary haemorrhage raise questions as to whether additional factors besides Leptospira may cause this as yet unrecognized entity in dogs.
Despite the discovery of the widely expressed CLCA (chloride channel regulators, calcium-activated) proteins more than 15 years ago, their seemingly diverse functions are still poorly understood. With the recent generation of porcine animal models for cystic fibrosis (CF), members of the porcine CLCA family are becoming of interest as possible modulators of the disease in the pig. Here, we characterize pCLCA2, the porcine ortholog of the human hCLCA2 and the murine mCLCA5, which are the only CLCA members expressed in the skin. Immunohistochemical studies with a specific antibody against pCLCA2 have revealed a highly restricted pCLCA2 protein expression in the skin. The protein is strictly co-localized with filaggrin and trichohyalin in the granular layer of the epidermis and the inner root sheath of the hair follicles, respectively. No differences have been observed between the expression patterns of wild-type pigs and CF transmembrane conductance regulator(-/-) pigs. We speculate that pCLCA2 plays an as yet undefined role in the structural integrity of the skin or, possibly, in specialized functions of the epidermis, including barrier or defense mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.