Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2(-/-) mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2(-/-) mutants with ProSAP2/Shank3αβ(-/-) mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.
Many animals maintain an internal representation of their heading as they move through their surroundings. Such a compass representation was recently discovered in a neural population in the Drosophila melanogaster central complex, a brain region implicated in spatial navigation. Here, we use two-photon calcium imaging and electrophysiology in head-fixed walking flies to identify a different neural population that conjunctively encodes heading and angular velocity, and is excited selectively by turns in either the clockwise or counterclockwise direction. We show how these mirror-symmetric turn responses combine with the neurons’ connectivity to the compass neurons to create an elegant mechanism for updating the fly’s heading representation when the animal turns in darkness. This mechanism, which employs recurrent loops with an angular shift, bears a resemblance to those proposed in theoretical models for rodent head direction cells. Our results provide a striking example of structure matching function for a broadly relevant computation.DOI: http://dx.doi.org/10.7554/eLife.23496.001
Transmitter release at the fly neuromuscular junction is abolished in the absence of a scaffold protein.
Sodium and chloride need to be ingested and cannot be stored. Therefore, choice of habitat and diet as related to NaCl needs to be tightly regulated. We thus expect that the behavioral effects of salt are organized according to its concentration. Here, we comparatively “fingerprint” the reflex releasing (in choice and feeding experiments) versus the reinforcing effects of sodium chloride (“salt”) in terms of their concentration dependencies, using larval Drosophila. Qualitatively, we find that the behavioral effects of salt in all 3 assays are similar: choice, feeding, and reinforcing effect all change from appetitive to aversive as concentration is increased. Quantitatively, however, the appetitive effects for choice and feeding share their optimum at around 0.02 M, whereas the dose–response curve for the reinforcing effect is shifted by more than one order of magnitude toward higher concentrations. Interestingly, a similar shift between these 2 kinds of behavioral effect is also found for sugars (Schipanski et al. 2008). Thus, for salt and for sugar, the sensory-to-motor system is more sensitive regarding immediate, reflexive behavior than regarding reinforcement. We speculate that this may partially be due to a dissociation of the sensory pathways signaling toward either reflexive behavior or internal reinforcement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.