This preliminary investigation has shown that a soil microbial community DNA profile can be obtained from the small sample of soil recovered from the sole of a shoe, and from soil stains on clothing. We have also shown that these profiles are representative of the site of collection and therefore could potentially be used as associative evidence to prove a link between suspects and crime scenes. Soil community profiles were obtained using the T-RFLP fingerprinting method that uses fluorescent primer technology and semi-automated analysis techniques similar to those used in human DNA profiling in forensic laboratories.
DNA profiling of microbial communities has been proposed as a tool for forensic comparison of soils, but its potential to discriminate between soils from similar land use and/or geographic location has been largely unexplored. We tested the ability of terminal restriction fragment length polymorphism (T-RFLP) to discriminate between soils from 10 sites within the Greater Wellington region, New Zealand, based on their bacterial and fungal DNA profiles. Significant differences in bacterial and fungal communities between soils collected from all but one pair of sites were demonstrated. In some instances, specific terminal restriction fragments were associated with particular sites. Patch discrimination was evident within several sites, which could prove useful for site-specific matching (e.g., matching shoe/car tire print to an object). These results support the need for further understanding of the spatial distribution of soil microbial communities before DNA profiling of soil microbial communities can be applied to the forensic context.
Distinguishing expirated bloodstains (blood forced by airflow out of the nose, mouth or a chest wound) from impact spatter (blood from gunshots, explosives, blunt force trauma and/or machinery accidents) is an important challenge in forensic science. Streptococcal bacteria are only found in the human mouth and saliva. This study developed a polymerase chain reaction (PCR) method that detects DNA from these bacteria as a sensitive tool to detect the presence of saliva. The PCR method was very specific to human oral streptococci, with no PCR product being made from human DNA or DNA from other microbes that were tested. It was also very sensitive, detecting as little as 60 fg of target DNA. The PCR amplification gave product with 99 out of 100 saliva samples tested. PCR was not inhibited by the presence of blood and could detect target DNA in expirated bloodstains in a range of materials and for up to 92 days after deposit on cardboard or cotton fabric. In a blind trial, the PCR method was able to distinguish three mock forensic samples that contained expirated blood from four that did not. Our data show that bacteria present in the oral cavity can be detected in bloodstains that contain saliva and therefore can potentially be used as a marker in forensic work to distinguish mouth-expirated bloodstains from other types of bloodstains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.