Natural killer cells harnessed from healthy individuals can be expanded ex vivo using various platforms to produce large doses for adoptive transfer into cancer patients. During such expansion, NK cells are increasingly activated and more efficient at killing cancer cells. Adoptive transfer however introduces these activated cells into a highly immunosuppressive tumor microenvironment mediated in part by excessive transforming growth factor beta (TGF-beta) from both cancer cells and their surrounding stroma. This microenvironment ultimately limits the clinical efficacy of NK cell therapy. In this study, we examined the use of a TGF-beta receptor kinase inhibitor, LY2157299, in preserving the cytotoxic function of ex vivo expanded, highly activated NK cells following sustained exposure to pathologic levels of TGF-beta in vitro and in a liver metastases model of colon cancer. Using myeloid leukemia and colon cancer cell lines, we show that the TGF-beta driven impairment of NK cell cytotoxicity is mitigated by LY2157299. We demonstrate this effect using quantitative cytotoxicity assays as well as by showing a preserved activated phenotype with high NKG2D/CD16 expression and enhanced cytokine production. In a mouse liver metastases model of colon cancer, we observed significantly improved eradication of liver metastases in mice treated with adoptive NK cells combined with LY2157299 compared with mice receiving NK cells or TGF beta inhibition alone. We propose that the therapeutic efficacy of adoptive NK cell therapy clinically will be markedly enhanced by complementary approaches targeting TGF-beta signaling in vivo.
NK cell adoptive therapy is a promising cancer therapeutic approach, but there are significant challenges that limiting its feasibility and clinical efficacy. One difficulty is the paucity of clinical grade manufacturing platforms to support the large scale expansion of highly active NK cells. We created an NK cell feeder cell line termed ‘NKF’ through overexpressing membrane bound IL-21 that is capable of inducing robust and sustained proliferation (>10,000-fold expansion at 5 weeks) of highly cytotoxic NK cells. The expanded NK cells exhibit increased cytotoxic function against a panel of blood cancer and solid tumor cells as compared to IL-2-activated non-expanded NK cells. The NKF-expanded NK cells also demonstrate efficacy in mouse models of human sarcoma and T cell leukemia. Mechanistic studies revealed that membrane-bound IL-21 leads to an activation of a STAT3/c-Myc pathway and increased NK cell metabolism with a shift towards aerobic glycolysis. The NKF feeder cell line is a promising new platform that enables the large scale proliferation of highly active NK cells in support of large scale third party NK cell clinical studies that have been recently intiatied. These results also provide mechanistic insights into how membrane-bound IL-21 regulates NK cell expansion.
Natural killer cells from acute myeloid leukaemia patients (AML-NK) show a dramatic impairment in cytotoxic activity. The exact reasons for this dysfunction are not fully understood. Here we show that the glycogen synthase kinase beta (GSK3β) expression is elevated in AML-NK cells. Interestingly, GSK3 overexpression in normal NK cells impairs their ability to kill AML cells, while genetic or pharmacological GSK3 inactivation enhances their cytotoxic activity. Mechanistic studies reveal that the increased cytotoxic activity correlates with an increase in AML-NK cell conjugates. GSK3 inhibition promotes the conjugate formation by upregulating LFA expression on NK cells and by inducing ICAM-1 expression on AML cells. The latter is mediated by increased NF-κB activation in response to TNF-α production by NK cells. Finally, GSK3-inhibited NK cells show significant efficacy in human AML mouse models. Overall, our work provides mechanistic insights into the AML-NK dysfunction and a potential NK cell therapy strategy.
Acute myeloid leukemia (AML) is an aggressive disease with a poor 5-year survival of 21% that is characterized by a differentiation arrest of immature myeloid cells. For a rare subtype of AML (acute promyeloctyic leukemia, 5-10% of cases) all-trans retinoic acid therapy removes the differentiation block, yielding over a 90% cure rate. However, this treatment is not effective for the other 90-95% of AML patients, suggesting new differentiation strategies are needed. Interestingly, differentiation is induced in normal hematopoietic cells through Toll-like receptor (TLR) stimulation and TLRs are expressed on AML cells. We present evidence that the TLR8 activation promotes AML differentiation and growth inhibition in a TLR8/MyD88/p38 dependent manner. We also show that that TLR7/TLR8 agonist, R848, considerably impairs the growth of human AML cells in immunodeficient mice. Our data suggests TLR8 activation has direct anti-leukemic effects independent of its immunomodulating properties that are currently under investigation for cancer therapy. Taken together, our results suggest that treatment with TLR8 agonists may be a promising new therapeutic strategy for AML.
More than half of T-ALL patients harbor gain-of-function mutations in the intracellular domain of Notch1. Diffuse infiltration of the bone marrow commonly occurs in T-ALL and relapsed B-ALL patients, and is associated with worse prognosis. However, the mechanism of leukemia outgrowth in the marrow and the resulting biological impact on hematopoiesis are poorly understood. Here, we investigated targetable cellular and molecular abnormalities in leukemia marrow stroma responsible for the suppression of normal hematopoiesis using a T-ALL mouse model and human T-ALL xenografts. We found that actively proliferating leukemia cells inhibited normal hematopoietic stem and progenitor cell (HSPC) proliferation and homing to the peri-vascular region. In addition, leukemia development was accompanied by the suppression of the endosteum-lining osteoblast population. We further demonstrate that aberrant Notch activation in the stroma plays an important role in negatively regulating the expression of CXLC12 on osteoblasts and their differentiation. Notch blockade reversed attenuated HSPC cycling, leukemia-associated abnormal blood lineage distribution and thrombocytopenia as well as recovered osteoblast and HSPC abundance and improved the hematopoietic-supportive functions of osteoblasts. Finally, we confirmed that reduced osteoblast frequency and enhanced Notch signaling were also features of the marrow stroma of human ALL tissues. Collectively, our findings suggest that therapeutically targeting the leukemia-infiltrated hematopoietic niche may restore HSPC homeostasis and improve the outcome of ALL patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.