QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that aims to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of = 30 − 200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the immunity to systematic effects of an interferometer. It will directly observe the sky through an array of back-to-back entry horns whose beams will be superimposed using a cooled quasioptical beam combiner. Images of the resulting interference fringes will be formed on two focal planes, each tiled with transition-edge sensors, cooled down to 320 mK. A dichroic filter placed between the optical combiner and the focal planes will select two frequency bands (centred at 150 GHz and 220 GHz), one frequency per focal plane. Polarization modulation will be achieved using a cold stepped half-wave plate (HWP) and polariser in front of the sky-facing horns.The full QUBIC instrument is described elsewhere 1,2,3,4 ; in this paper we will concentrate in particular on simulations of the optical combiner (an off-axis Gregorian imager) and the feedhorn array. We model the optical performance of both the QUBIC full module and a scaled-down technological demonstrator which will be used to validate the full instrument design. Optical modelling is carried out using full vector physical optics with a combination of commercial and in-house software. In the high-frequency channel we must be careful to consider the higher-order modes that can be transmitted by the horn array. The instrument window function is used as a measure of performance and we investigate the effect of, for example, alignment and manufacturing tolerances, truncation by optical components and off-axis aberrations. We also report on laboratory tests carried on the QUBIC technological demonstrator in advance of deployment to the observing site in Argentina.
QUBIC, the QU Bolometric Interferometer for Cosmology, is a novel forthcoming instrument to measure the B-mode polarization anisotropy of the Cosmic Microwave Background. The detection of the B-mode signal will be extremely challenging; QUBIC has been designed to address this with a novel approach, namely bolometric interferometry. The receiver cryostat is exceptionally large and cools complex optical and detector stages to 40 K, 4 K, 1 K and 350 mK using two pulse tube coolers, a novel 4 He sorption cooler and a double-stage 3 He/ 4 He sorption cooler. We discuss the thermal and mechanical design of the cryostat, modelling and thermal analysis, and laboratory cryogenic testing.
The Tianlai Pathfinder is designed to demonstrate the feasibility of using wide field of view radio interferometers to map the density of neutral hydrogen in the Universe after the Epoch of Reionizaton. This approach, called 21 cm intensity-mapping, promises an inexpensive means for surveying the large-scale structure of the cosmos. The Tianlai Pathfinder presently consists of an array of three, 15 m × 40 m cylinder telescopes and an array of sixteen, 6 m diameter dish antennas located in a radio-quiet part of western China. The two types of arrays were chosen to determine the advantages and disadvantages of each approach. The primary goal of the Pathfinder is to make 3D maps by surveying neutral hydrogen over large areas of the sky in two different redshift ranges: first at 1.03 > z > 0.78 (700 − 800 MHz) and later at 0.21 > z > 0.12 (1170 − 1270 MHz). The most significant challenge to 21 cm intensity-mapping is the removal of strong foreground radiation that dwarfs the cosmological signal. It requires exquisite knowledge of the instrumental response, i.e. calibration. In this paper we provide an overview of the status of the Pathfinder and discuss the details of some of the analysis that we have carried out to measure the beam function of both arrays. We compare electromagnetic simulations of the arrays to measurements, discuss measurements of the gain and phase stability of the instrument, and provide a brief overview of the data processing pipeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.