The corrosion behavior of NiTi alloy and stainless steels (AISI 316L and X2CrNiMoN22-5-3) in 0.9% sodium chloride (0.154 moll-1) solution was investigated using open circuit potential measurements, potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Microstructural analyses before and after electrochemical tests were performed with the scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The lowest corrosion current density has NiTi alloy and the extent of the passive range increased in the order AISI 316L stainless steel < NiTi alloy < X2CrNiMoN22-5-3 duplex stainless steel. The oxide film formed on all samples has a double-layer structure consisting of a barrier-type inner layer and a porous outer layer. Oxide films formed on the surface of steels mainly contains iron oxides and chromium oxide, while the surface film of the NiTi alloy mainly contains TiO 2 oxide.
The 8-mm diameter bars of Cu-Al-Mn shape memory alloys were produced by continuous casting technique. The samples were characterised using optical microscopy and scanning electron microscopy along with EDX analysis. The continuous cast alloy revealed some martensitic phase, which, after quenching, led to the microstructure that is completely martensite. Quenching of samples had an effect on several mechanical properties and change in morphology of fracture. After ageing at 200 °C and 300 °C, the tensile strength increased and elongation drastically decreased. Morphology of fracture surface changed from primary ductile to a mixture of intergranular and ductile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.