Double-seronegative myasthenia gravis (dSN-MG, without detectable AChR and MuSK antibodies) presents a serious gap in MG diagnosis and understanding. Recently, autoantibodies against the low-density lipoprotein receptor-related protein 4 (LRP4) have been identified in several dSN-MG sera, but with dramatic frequency variation (∼2-50%). We have developed a cell based assay (CBA) based on human LRP4 expressing HEK293 cells, for the reliable and efficient detection of LRP4 antibodies. We have screened about 800 MG patient sera from 10 countries for LRP4 antibodies. The overall frequency of LRP4-MG in the dSN-MG group (635 patients) was 18.7% but with variations among different populations (range 7-32.7%). Interestingly, we also identified double positive sera: 8/107 anti-AChR positive and 10/67 anti-MuSK positive sera also had detectable LRP4 antibodies, predominantly originating from only two of the participating groups. No LRP4 antibodies were identified in sera from 56 healthy controls tested, while 4/110 from patients with other neuroimmune diseases were positive. The clinical data, when available, for the LRP4-MG patients were then studied. At disease onset symptoms were mild (81% had MGFA grade I or II), with some identified thymic changes (32% hyperplasia, none with thymoma). On the other hand, double positive patients (AChR/LRP4-MG and MuSK/LRP4-MG) had more severe symptoms at onset compared with any single positive MG subgroup. Contrary to MuSK-MG, 27% of ocular dSN-MG patients were LRP4 antibody positive. Similarly, contrary to MuSK antibodies, which are predominantly of the IgG4 subtype, LRP4 antibodies were predominantly of the IgG1 and IgG2 subtypes. The prevalence was higher in women than in men (female/male ratio 2.5/1), with an average disease onset at ages 33.4 for females and 41.9 for males. Overall, the response of LRP4-MG patients to treatment was similar to published responses of AChR-MG rather than to MuSK-MG patients.
ObjectiveTo evaluate the safety and efficacy of efgartigimod in patients with generalized myasthenia gravis (MG) enrolled in the ADAPT+ long-term extension study.BackgroundTreatment with efgartigimod, a human IgG1 antibody Fc-fragment that blocks neonatal Fc receptor, resulted in clinically meaningful improvement (CMI) in MG-specific outcome measures in the ADAPT phase 3 clinical trial. All patients who completed ADAPT were eligible to enroll in its ongoing open-label, 3-year extension study, ADAPT+.Design/MethodsEfgartigimod (10 mg/kg IV) was administered in cycles of once-weekly infusions for 4 weeks, with subsequent cycles initiated based on clinical evaluation. Efficacy was assessed during each cycle utilizing Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) scales.ResultsNinety-one percent of ADAPT patients (151/167) entered ADAPT+. As of February 2021, 106 AChR-Ab+ and 33 AChR-Ab– patients had received at least 1 dose of open-label efgartigimod (including 66 ADAPT placebo [PBO] patients). The mean (SD) study duration was 363 (114) days, resulting in 138 patient-years of observation. Similar incidence rates per patient year (IR/PY) of serious adverse events were seen in ADAPT (efgartigimod: 0.11; placebo: 0.29) compared to ADAPT+ (0.25). Five deaths (acute myocardial infarction, COVID-19 pneumonia/septic shock, bacterial pneumonia/MG crisis, malignant lung neoplasm, and unknown [multiple cardiovascular risk factors identified on autopsy]) occurred; none were considered related to efgartigimod by the investigator. AEs were predominantly mild or moderate. CMI was observed in AChR-Ab+ patients during each cycle (up to 10 cycles) at magnitudes comparable to improvements observed at week 3 of cycle 1 (mean[SE] improvements: MG-ADL, –5.1[0.34]; QMG, –4.7[0.41]). Clinical improvements mirrored maximal reductions in total IgG and AChR-Abs across all cycles.ConclusionsThis analysis suggests the efficacy of long-term treatment with efgartigimod was consistent across multiple cycles. No new safety signals were identified, despite being conducted before vaccine availability during the COVID-19 pandemic.
ObjectiveTo investigate grey (GM) and white matter (WM) abnormalities and their effects on cognitive and behavioral deficits in a large, phenotypically and genotypically well-characterized cohort of classic adult (aDM1, age at onset ≥20 years) or juvenile (jDM1, age at onset <20 years) patients with myotonic dystrophy type 1 (DM1).MethodsA case-control study including 51 DM1 patients (17 jDM1 and 34 aDM1) and 34 controls was conducted at an academic medical center. Clinical, cognitive and structural MRI evaluations were obtained. Quantitative assessments of regional GM volumes, WM hyperintensities (WMHs), and microstructural WM tract damage were performed. The association between structural brain damage and clinical and cognitive findings was assessed.ResultsDM1 patients showed a high prevalence of WMHs, severe regional GM atrophy including the key nodes of the sensorimotor and main cognitive brain networks, and WM microstructural damage of the interhemispheric, corticospinal, limbic and associative pathways. WM tract damage extends well beyond the focal WMHs. While aDM1 patients had severe patterns of GM atrophy and WM tract damage, in jDM1 patients WM abnormalities exceeded GM involvement. In DM1, WMHs and microstructural damage, but not GM atrophy, correlated with cognitive deficits.ConclusionsWM damage, through a disconnection between GM structures, is likely to be the major contributor to cognitive impairment in DM1. Our MRI findings in aDM1 and jDM1 patients support the hypothesis of a degenerative (premature aging) origin of the GM abnormalities and of developmental changes as the principal substrates of microstructural WM alterations in DM1.
Myotonic dystrophy type 1 (DM1) is caused by a highly unstable expansion of CTG repeats in the DMPK gene. Its huge phenotypic variability cannot be explained solely by the repeat number. Recently, variant repeats within the DMPK expansions have emerged as potential disease modifiers. The frequency of variant expanded alleles was estimated in 242 DM1 patients from 174 Serbian families using repeat-primed PCR (RP-PCR). The patterns of variant repeats were determined by direct sequencing of RP-PCR or PCR products. PCR-based southern blot was performed to get insight into the intergenerational mutational dynamics of variant expanded alleles. All patients carrying variant repeats were clinically re-examined. Variant repeats were observed in eight patients from five families (2.9%). They were detected only at the 3' end of DMPK expansions. CCG variant repeats were present in seven patients, either as a part of regular runs of CCGCTG hexamer, individual repeats, or CCG blocks. Analyses of three intergenerational transmissions revealed a considerable stability or likely a contraction of variant expanded alleles. Intriguingly, a decrease in age at onset accompanied these transmissions. Overall, patients were characterized by a milder phenotype and/or some atypical symptoms that could be rather clinically suggestive of myotonic dystrophy type 2. In addition, the first case of de novo CTC variant repeat was observed. Variant repeats might explain a part of the phenotypic variability in a small percent of DM1 patients and likely display a stabilizing effect on the meiotic instability of DMPK expanded alleles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.