Clutches can be used to enhance the functionality of springs or actuators in robotic devices. Here we describe a lightweight, low-power clutch used to control spring engagement in an ankle exoskeleton. The clutch is based on electrostatic adhesion between thin electrode sheets coated with a dielectric material. Each electrode pair weighs 1.5 g, bears up to 100 N, and changes states in less than 30 ms. We placed clutches in series with elastomer springs to allow control of spring engagement, and placed several clutched springs in parallel to discretely adjust stiffness. By engaging different numbers of springs, the system produced six different levels of stiffness. Force at peak displacement ranged from 14 to 501 N, and the device returned 95% of stored mechanical energy. Each clutched spring element weighed 26 g. We attached one clutched spring to an ankle exoskeleton and used it to engage the spring only while the foot was on the ground during 150 consecutive walking steps. Peak torque was 7.3 N·m on an average step, and the device consumed 0.6 mW of electricity. Compared to other electrically-controllable clutches, this approach results in three times higher torque density and two orders of magnitude lower power consumption per unit torque. We anticipate this technology will be incorporated into exoskeletons that tune stiffness online and into new actuator designs that utilize many lightweight, lowpower clutches acting in concert.
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young's) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ∼6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS 'active tendons' into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Actuators that employ clutches can exhibit mechanical impedance tuning and improved energy efficiency. However, these integrated designs have been difficult to achieve in practice because traditional clutches are typically heavy and consume substantial power. In this article, we describe a lightweight and low-power clutch that operates with electrostatic adhesion and achieves order-of-magnitude improvements in performance compared to traditional clutches. In order to inform appropriate design in a variety of applications, we experimentally determine the effect of clutch length, width, dielectric thickness, voltage, and electrode stiffness on the holding force, engage and release times, and power consumption. The highest performance clutch held 190 N, weighed 15 g, and consumed 3.2 mW of power. The best samples released and engaged within 20 ms, as fast as conventional clutches. We also conducted a fatigue test that showed reliable performance for over 3 million cycles. We expect electroadhesive clutches like these will enable actuator designs that achieve dexterous, dynamic movement of lightweight robotic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.