The enzyme isopenicillin N synthetase (IPS) catalyses the oxidative condensation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (LLD-ACV) to isopenicillin N, which is a central reaction in the pathway to clinically important penicillins and cephalosporins. Here we report the cloning, characterization and expression in Escherichia coli of the gene encoding the IPS protein in Cephalosporium acremonium. The IPS gene was identified by purifying IPS protein, determining the first 23 amino-terminal amino acids, preparing a set of synthetic oligonucleotides encoding a portion of the determined amino-acid sequence, and probing a cosmid genome library with the mixed oligonucleotides. A cosmid hybridizing with the probe was isolated and the IPS gene was localized and sequenced. The IPS gene encodes a polypeptide of relative molecular mass (Mr) 38,416. When this open reading frame was cloned into an E. coli expression vector and inserted into E. coli, the recombinant E. coli produced a new protein co-migrating with authentic IPS as the major protein of the cell (approximately 20% of cell protein). Crude cell extracts condensed LLD-ACV to a penicillinase-sensitive molecule whose antibacterial activity indicated that it was isopenicillin N.
The predicted amino acid sequences of isopenicillin N synthetase from both Cephalosporium acremonium and Penicillium chrysogenum have two cysteine residues in analogous positions (Cys-106 and Cys-255 in the C. acremonium numbering). To examine the role of these cysteine residues in the activity of the C. acremonium enzyme, we used site-directed in vitro mutagenesis to change these cysteine residues to serine residues. Mutation of Cys-255 reduces specific activity approximately equal to 50%, whereas mutation of Cys-106 or mutation of both Cys-106 and Cys-255 reduces specific activity about 97%. This suggests that the cysteines are important but not essential for IPNS activity. Alkylation of IPNS also almost completely inactivated the enzyme, but residual activity could have been due to incomplete alkylation. Atomic substitution via genetic manipulation in this case is a more accurate means of assessing the role of sulfhydryl moieties in enzyme activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.