Voice recognition technology is one of biometric technology. Sound is a unique part of the human being which made an individual can be easily distinguished one from another. Voice can also provide information such as gender, emotion, and identity of the speaker. This research will record human voices that pronounce digits between 0 and 9 with and without noise. Features of this sound recording will be extracted using Mel Frequency Cepstral Coefficient (MFCC). Mean, standard deviation, max, min, and the combination of them will be used to construct the feature vectors. This feature vectors then will be classified using Support Vector Machine (SVM). There will be two classification models. The first one is based on the speaker and the other one based on the digits pronounced. The classification model then will be validated by performing 10-fold cross-validation.The best average accuracy from two classification model is 91.83%. This result achieved using Mean + Standard deviation + Min + Max as features.
Mengantuk bagi pengemudi dapat menyebabkan kecelakaan lalu lintas yang fatal. Banyak penelitian melaporkan bahwa gerakan yang berhubungan dengan mata dan menguap berkorelasi dengan risiko kelelahan dan keselamatan dalam berkendara. Namun, metode ini cenderung bergantung pada gerakan keadaan mata atau kondisi mulut. Dalam penelitian ini, kami menyajikan pendekatan berbasis Convolutional Neural Network untuk mendeteksi kantuk pengemudi secara otomatis tanpa perlu memodelkan kondisi lingkungan ataupun fitur wajah pengendara. Dataset citra yang digunakan diturunkan dari dataset video YawDD dimana resolusi yang digunakan adalah 32 x 32 piksel. Metode CNN yang digunakan adalah AlexNet yang memiliki dua lapisan konvolusi dan dibandingkan dengan metode tradisional yang masih harus melakukan pemilihan dan ekstrasi fitur secara manual. Eksperimen menunjukkan parameter terbaik yaitu minibatch senilai 30, learning rate senilai 0,1, rasio training dan testing yaitu 0,9 : 0,1, dropout senilai 10%, dan epoch senilai 500. Akurasi yang dihasilkan berhasil mencapai 77,8% walaupun waktu training yang dibutuhkan masih relatif tinggi. Meskipun demikian, metode yang ini mampu mengungguli metode tradisional yang masih memerlukan pemodelan fitur secara eksplisit (yaitu PERCLOS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.