Huntington’s disease (HD) is a progressive neurological disease that is inherited in an autosomal fashion. The cause of disease pathology is an expansion of cytosine-adenine-guanine (CAG) repeats within the huntingtin gene (HTT) on chromosome 4 (4p16.3), which codes the huntingtin protein (mHTT). The common symptoms of HD include motor and cognitive impairment of psychiatric functions. Patients exhibit a representative phenotype of involuntary movement (chorea) of limbs, impaired cognition, and severe psychiatric disturbances (mood swings, depression, and personality changes). A variety of symptomatic treatments (which target glutamate and dopamine pathways, caspases, inhibition of aggregation, mitochondrial dysfunction, transcriptional dysregulation, and fetal neural transplants, etc.) are available and some are in the pipeline. Advancement in novel therapeutic approaches include targeting the mutant huntingtin (mHTT) protein and the HTT gene. New gene editing techniques will reduce the CAG repeats. More appropriate and readily tractable treatment goals, coupled with advances in analytical tools will help to assess the clinical outcomes of HD treatments. This will not only improve the quality of life and life span of HD patients, but it will also provide a beneficial role in other inherited and neurological disorders. In this review, we aim to discuss current therapeutic research approaches and their possible uses for HD.
Aim:The aim was to evaluate the effect of different cavity disinfectants on dentin bond strengths of composite resin applied with two different adhesive systems.Materials and Methods:Two-hundred mandibular molars were sectioned parallel to the occlusal surface to expose dentin in the midcoronal one-third. The dentinal surfaces were polished with waterproof-polishing papers. The specimens were randomly divided into five groups of 40 teeth each as follows: group 1(control) -- specimens were not treated with any cavity disinfectants. Groups 2--5 (experimental groups) -- dentin surfaces were treated with the following cavity disinfectants, respectively; 2% chlorhexidine solution, 0.1% benzalkonium chloride-based disinfectant, 1% chlorhexidine gel, and an iodine potassium iodide/copper sulfate-based disinfectant. The specimens were then randomly divided into two subgroups including 20 teeth each to evaluate the effect of different bonding systems. Dentin bonding systems were applied to the dentin surfaces and the composite buildups were done. After the specimens were stored in an incubator for 24 hours, the shear bond strength was measured at a crosshead speed of 1 mm/min. The specimens were then statistically analyzed.Statistical Analysis Used:One way analysis of variance and Tukey-HSD tests were used.Results:There was no significant difference between chlorhexidine gel and control groups regardless of the type of the bonding agent used (P>0.05). On the other hand, pretreatment with benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions had a negative effect on the shear bond strength of self-etching bonding systems.Conclusions:The findings of this study suggest that when benzalkonium chloride-based, iodine potassium iodide/copper sulfate-based disinfectants or chlorhexidine solutions are used as a cavity disinfectant, an etch-and-rinse bonding system should be preferred.
Aim/Objective:To evaluate the in vitro effect of bonded restorations on the fracture resistance of root canal-treated teeth.Materials and Methods:One hundred twenty extracted, maxillary, permanent premolars were collected. After preparing the access cavity, the teeth were biomechanically prepared and obturated. Samples were divided into six groups based on the type of restorative material used to restore them. Teeth were embedded in acrylic resin and their fracture strength was measured using a Universal Testing Machine. Data were evaluated statistically using one-way ANOVA-F and unpaired t-test.Results:Teeth restored with bonded amalgam and composite resin showed higher fracture resistance than those restored with conventional amalgam. Fracture strengths of bonded restorations and intact teeth were not statistically different. The results suggested that the group restored with conventional amalgam had the lowest fracture resistance. No statistically significant differences were found between the bonded amalgam and composite resin groups.Conclusion:Conventional amalgam core showed the least fracture resistance whereas; composite resin and bonded amalgam core showed fracture resistance was similar to that of natural tooth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.