MicroRNA mir-9 is speculated to be involved in insulin secretion because of its ability to regulate exocytosis. Sirt1 is an NAD-dependent protein deacetylase and a critical factor in the modulation of cellular responses to altered metabolic flux. It has also been shown recently to control insulin secretion from pancreatic β-islets. However, little is known about the regulation of Sirt1 and mir-9 levels in pancreatic β-cells, particularly during glucose-dependent insulin secretion. In this article, we report that mir-9 and Sirt1 protein levels are actively regulated in vivo in β-islets during glucose-dependent insulin secretion. Our data also demonstrates that mir-9 targets and regulates Sirt1 expression in insulin-secreting cells. This targeting is relevant in pancreatic β-islets, where we show a reduction in Sirt1 protein levels when mir-9 expression is high during glucose-dependent insulin secretion. This functional interplay between insulin secretion, mir-9 and Sirt1 expression could be relevant in diabetes. It also highlights the crosstalk between an NAD-dependent protein deacetylase and microRNA in pancreatic β-cells.
Spermiation is the final phase of spermatogenesis leading to release of mature spermatids into the lumen of the seminiferous tubules. Morphologically, it involves a series of events, namely removal of excess spermatid cytoplasm, removal of ectoplasmic specialization, formation of tubulobulbar complex, and final disengagement of the spermatid from the Sertoli cell. Previous studies in our laboratory have shown that administration of 17beta-estradiol at a dose of 100 microg/kg body weight for 10 d resulted in failure of spermiation. This was accompanied by a suppression of FSH and intratesticular testosterone with a concomitant rise in intratesticular 17beta-estradiol. The present study was undertaken to determine the cause of failure and subsequently the molecular events in spermiation. Electron microscopic and confocal studies revealed an absence of tubulobulbar complex in step 19 spermatids after estradiol treatment, highlighting the significance of these structures in spermiation. It was further observed that treatment affected the Sertoli cell cytoskeleton and Arp2/3 complex that is critical for de novo polymerization of actin during tubulobulbar complex formation. In conclusion, the present study reports the role of 17beta-estradiol in inhibiting the formation of tubulobulbar complex, which could be one of the mechanism by which environmental estrogens influence male fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.