The HA2 glycopolypeptide (gp) is highly conserved in all influenza A virus strains, and it is known to play a major role in the fusion of the virus with the endosomal membrane in host cells during the course of viral infection. Vaccines and therapeutics targeting this HA2 gp could induce efficient broad-spectrum immunity against influenza A virus infections. So far, there have been no studies on the possible therapeutic effects of monoclonal antibodies (MAbs), specifically against the fusion peptide of hemagglutinin (HA), upon lethal infections with highly pathogenic avian influenza (HPAI) H5N1 virus. We have identified MAb 1C9, which binds to GLFGAIAGF, a part of the fusion peptide of the HA2 gp. We evaluated the efficacy of MAb 1C9 as a therapy for influenza A virus infections. This MAb, which inhibited cell fusion in vitro when administered passively, protected 100% of mice from challenge with five 50% mouse lethal doses of HPAI H5N1 influenza A viruses from two different clades. Furthermore, it caused earlier clearance of the virus from the lung. The influenza virus load was assessed in lung samples from mice challenged after pretreatment with MAb 1C9 (24 h prior to challenge) and from mice receiving early treatment (24 h after challenge). The study shows that MAb 1C9, which is specific to the antigenically conserved fusion peptide of HA2, can contribute to the cross-clade protection of mice infected with H5N1 virus and mediate more effective recovery from infection.
A therapy for dengue is still elusive. We describe the neutralizing and protective capacity of a dengue serotype-cross-reactive antibody isolated from the plasmablasts of a patient. Antibody SIgN-3C neutralized all four dengue virus serotypes at nano to picomolar concentrations and significantly decreased viremia of all serotypes in adult mice when given 2 days after infection. Moreover, mice were protected from pathology and death from a lethal dengue virus-2 infection. To avoid potential Fc-mediated uptake of immune complexes and ensuing enhanced infection, we introduced a LALA mutation in the Fc part. SIgN-3C-LALA was as efficient as the non-modified antibody in neutralizing dengue virus and in protecting mice while antibody-dependent enhancement was completely abrogated. The epitope of the antibody includes conserved amino acids in all three domains of the glycoprotein, which can explain its cross-reactivity. SIgN-3C-LALA neutralizes dengue virus both pre and post-attachment to host cells. These attributes likely contribute to the remarkable protective capacity of SIgN-3C.
Dengue is endemic in tropical countries worldwide and the four dengue virus serotypes often co-circulate. Infection with one serotype results in high titers of cross-reactive antibodies produced by plasmablasts, protecting temporarily against all serotypes, but impairing protective immunity in subsequent infections. To understand the development of these plasmablasts, we analyzed virus-specific B cell properties in patients during acute disease and at convalescence. Plasmablasts were unrelated to classical memory cells expanding in the blood during early recovery. We propose that only a small subset of memory B cells is activated as plasmablasts during repeat infection and that plasmablast responses are not representative of the memory B cell repertoire after dengue infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.