We studied the long-period ground motions in the Osaka sedimentary basin, Japan, which contains a 1-to 3-km thickness of sediments and is the site of many buildings or construction structures with long-natural period. We simulated the broadband ground motions likely to be produced by the hypothetical Nankai earthquake: the earthquake expected to give rise to the most severe long-period ground motion within the basin. For the simulation, we constructed multiscale heterogeneous source models based on the Central Disaster Management Council of Japan (CDMC) source model and adopted a hybrid computation method in which long-period motion and shortperiod motion are computed using a 3-D finite difference method and the stochastic Green's function method, respectively. In computing long-period motions, we used a 3-D structure model of the crust and the Osaka sedimentary basin. The ground motions are estimated to have peak velocities of 50-90 cm/s, prolonged durations exceeding 300 s, and long predominant periods of 5-10 s in the area with great thickness of sediments. The predominant periods are in agreement with an approximate evaluation by 4 H/ V s where H and V s are the thickness of the sediment and the average S wave velocity, respectively.
The characteristics of sound propagation and speech transmission along a tunnel with a "T" intersection were investigated. At receivers within sight of the sound source, low frequencies were mainly attenuated around the intersection than high frequencies. At receivers out of sight of the source, high frequencies were extensively attenuated. The overall pattern of sound attenuation along the different sections of tunnel, which was calculated by the conical beam method, agreed well with the measurements in this study. Numerical calculations of reflected and diffracted waves with minimum transmission paths in a two-dimensional plane showed that reflected waves were the primary contributors to sound fields out of sight of the source. The articulation scores measured at receivers within sight of the source were high, and most of the confusion concerned syllables that could easily be misheard, even if there were a high signal-to-noise ratio. The types of syllable confusions observed at the receivers out of sight of the source appeared to have been caused by the greater deterioration in speech signals along this part of the tunnel, especially at high frequencies. The evaluation by rapid speech transmission indices (RASTI) appeared to be overestimated at the receivers out of sight of the source. Taking into account the early decay times of impulsive sound and the calculation procedures used in RASTI, it is concluded that speech intelligibility may not have been evaluated correctly by RASTI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.