A major, unprecedented improvement in the durability of polymer electrolyte membrane fuel cells is obtained by tuning the properties of the interface between the catalyst and the ionomer by choosing the appropriate dispersing medium. While a fuel cell cathode prepared from aqueous dispersion showed 90 mV loss at 0.8 A cm(-2) after 30,000 potential cycles (0.6-1.0 V), a fuel cell cathode prepared from glycerol dispersion exhibited only 20 mV loss after 70,000 cycles. This minimum performance loss occurs even though there was an over 80% reduction of electrochemical surface area of the Pt catalyst. These findings indicate that a proper understanding and control of the catalyst-water-ionomer (three-phase) interfaces is even more important for maintaining fuel cell durability in typical electrodes than catalyst agglomeration, and this opens up a novel path for tailoring the functional properties of electrified interfaces.
Efficient and cost‐effective bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are of vital importance in energy conversion and storage devices. Despite the recent progress in bifunctional oxygen electrocatalysts, their unbalanced and insufficient OER and ORR activities has continued to pose challenges for the practical application of such energy devices. The design of highly integrated, high‐performance, bifunctional oxygen electrocatalysts composed of highly graphitic nanoshells embedded in mesoporous carbon (GNS/MC) is reported. The GNS/MC exhibits very high oxygen electrode activity, which is one of the best performances among nonprecious metal bifunctional oxygen electrocatalysts, and substantially outperforms Ir‐ and Pt‐based catalysts. Moreover, the GNS/MC shows excellent durability for both OER and ORR. In situ X‐ray absorption spectroscopy and square wave voltammetry reveal the roles of residual Ni and Fe entities in enhancing OER and ORR activities. Raman spectra indicate highly graphitic, defect‐rich nature of the GNS/MC, which can contribute to the enhanced OER activity and to high stability for the OER and ORR. In aqueous Na–air battery tests, the GNS/MC air cathode‐based cell exhibits superior performance to Ir/C‐ and Pt/C‐based batteries. Significantly, the GNS/MC‐based cell demonstrates the first example of rechargeable aqueous Na–air battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.