Autonomous buses are becoming increasingly popular and have been widely developed in many countries. However, autonomous buses must learn to navigate the city efficiently to be integrated into public transport systems. Efficient operation of these buses can be achieved by intelligent agents through reinforcement learning. In this study, we investigate the autonomous bus fleet control problem, which appears noisy to the agents owing to random arrivals and incomplete observation of the environment. We propose a multi-agent reinforcement learning method combined with an advanced policy gradient algorithm for this large-scale dynamic optimization problem. An agent-based simulation platform was developed to model the dynamic system of a fixed stop/station loop route, autonomous bus fleet, and passengers. This platform was also applied to assess the performance of the proposed algorithm. The experimental results indicate that the developed algorithm outperforms other reinforcement learning methods in the multi-agent domain. The simulation results also reveal the effectiveness of our proposed algorithm in outperforming the existing scheduled bus system in terms of the bus fleet size and passenger wait times for bus routes with comparatively lesser number of passengers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.