Abstract. This paper gives a comprehensive analysis of Montgomery powering ladder. Initially developed for fast scalar multiplication on elliptic curves, we extend the scope of Montgomery ladder to any exponentiation in an abelian group. Computationally, the Montgomery ladder has the triple advantage of presenting a Lucas chain structure, of being parallelized, and of sharing a common operand. Furthermore, contrary to the classical binary algorithms, it behaves very regularly, which makes it naturally protected against a large variety of implementation attacks.
This paper describes new methods for producing optimal binary signed-digit representations. This can be useful in the fast computation of exponentiations. Contrary to existing algorithms, the digits are scanned from left to right (i.e., from the most significant position to the least significant position). This may lead to better performances in both hardware and software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.