Abstract-In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogues to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting, and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.
In this work we propose the construction of two-channel wavelet filterbanks for analyzing functions defined on the vertices of any arbitrary finite weighted undirected graph. These graph based functions are referred to as graph-signals as we build a framework in which many concepts from the classical signal processing domain, such as Fourier decomposition, signal filtering and downsampling can be extended to graph domain. Especially, we observe a spectral folding phenomenon in bipartite graphs which occurs during downsampling of these graphs and produces aliasing in graph signals. This property of bipartite graphs, allows us to design critically sampled two-channel filterbanks, and we propose quadrature mirror filters (referred to as graph-QMF) for bipartite graph which cancel aliasing and lead to perfect reconstruction. For arbitrary graphs we present a bipartite subgraph decomposition which produces an edge-disjoint collection of bipartite subgraphs. Graph-QMFs are then constructed on each bipartite subgraph leading to "multi-dimensional" separable wavelet filterbanks on graphs. Our proposed filterbanks are critically sampled and we state necessary and sufficient conditions for orthogonality, aliasing cancellation and perfect reconstruction. The filterbanks are realized by Chebychev polynomial approximations.
In our recent work, we proposed the design of perfect reconstruction orthogonal wavelet filterbanks, called graph-QMF, for arbitrary undirected weighted graphs. In that formulation we first designed "one-dimensional" two-channel filterbanks on bipartite graphs, and then extended them to "multi-dimensional" separable two-channel filterbanks for arbitrary graphs via a bipartite subgraph decomposition. We specifically designed wavelet filters based on the spectral decomposition of the graph, and stated necessary and sufficient conditions for a two-channel graph filter-bank on bipartite graphs to provide aliasing-cancellation, perfect reconstruction and orthogonal set of basis (orthogonality).While, the exact graph-QMF designs satisfy all the above conditions, they are not exactly k-hop localized on the graph. In this paper, we relax the condition of orthogonality to design a biorthogonal pair of graph-wavelets that can have compact spatial spread and still satisfy the perfect reconstruction conditions. The design is analogous to the standard Cohen-Daubechies-Feauveau's (CDF) construction of factorizing a maximally-flat Daubechies half-band filter. Preliminary results demonstrate that the proposed filterbanks can be useful for both standard signal processing applications as well as for signals defined on arbitrary graphs.
In this paper, we propose a novel algorithm to interpolate data defined on graphs, using signal processing concepts. The interpolation of missing values from known samples appears in various applications, such as matrix/vector completion, sampling of highdimensional data, semi-supervised learning etc. In this paper, we formulate the data interpolation problem as a signal reconstruction problem on a graph, where a graph signal is defined as the information attached to each node (scalar or vector values mapped to the set of vertices/edges of the graph). We use recent results for sampling in graphs to find classes of bandlimited (BL) graph signals that can be reconstructed from their partially observed samples. The interpolated signal is obtained by projecting the input signal into the appropriate BL graph signal space. Additionally, we impose a 'bilateral' weighting scheme on the links between known samples, which further improves accuracy. We use our proposed method for collaborative filtering in recommendation systems. Preliminary results show a very favorable trade-off between accuracy and complexity, compared to state of the art algorithms.
In this paper, we present two localized graph filtering based methods for interpolating graph signals defined on the vertices of arbitrary graphs from only a partial set of samples. The first method is an extension of previous work on reconstructing bandlimited graph signals from partially observed samples. The iterative graph filtering approach very closely approximates the solution proposed in the that work, while being computationally more efficient. As an alternative, we propose a regularization based framework in which we define the cost of reconstruction to be a combination of smoothness of the graph signal and the reconstruction error with respect to the known samples, and find solutions that minimize this cost. We provide both a closed form solution and a computationally efficient iterative solution of the optimization problem. The experimental results on the recommendation system datasets demonstrate effectiveness of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.