Least Developed Countries are likely to be hit the hardest by climate change and need focused efforts towards adaptation. Nepal recognizes that it needs to integrate climate change adaptation into various policies, but limited understanding of how to make these policies coherent is among the factors that hinder effective adaptation action. This can lead to wasted resources and lost opportunities. This paper applies concepts from policy coherence for development frameworks and policy content analysis to examine coherence in Nepal's climate and forest policies-and discusses the factors hindering effective implementation. The policies are analyzed at the horizontal/external level at three layers-motivation, measures, and planned implementation process. The paper finds that policies are more consistent on motivation level and adaptation measures, but are less coherent on implementation. The National Adaptation Programme of Action (NAPA) is more explicit in identifying institutions, organizations, roles and responsibilities, resource allocation (financial), and a monitoring and evaluation plan for climate change adaptation while other policies such as Climate Change Policy 2011, National Biodiversity Strategy and Action Plan 2014-2020, Forest Policy 2015, and Forest Sector Strategy 2016 have critical gaps in this area. This paper conclude that formulation of a policy, articulating targets, and mobilizing financial resources are in themselves not sufficient to effectively address climate change adaptation. Policy-based legislation is required, together with development of a supportive collaborative multi-stakeholder approach at different levels of governance, backed up by effective, collaborative monitoring and enforcement.
This study assessed the above-ground carbon stock in the five major forest types, representing two physiographic regions and four districts of Nepal. Altogether, 116 circular sample plots were laid out systematically in different forests types to inventory the forest. Total above-ground biomass was derived with allometric equations. Results indicated variation in age of the stand (18-75 years), above-ground carbon stock per hectare (34.30- 97.86 dry wt. ton ha-1) and rate of carbon sequestration (1.30-3.21 t ha-1yr-1), according to different forest types. The rate of carbon sequestration by different forest types depended on the growing nature of the forest stands. Tropical riverine and Alnus nepalensis forest types demonstrated the highest carbon sequestration rates in Nepal. Key Words: Above-ground biomass; carbon; forest types; Nepal DOI: 10.3126/banko.v19i2.2979 Banko Janakari, Vol. 19, No.2 2009 pp.10-14
Purpose The purpose of this paper is to understand local perceptions on climate change and its impacts on biodiversity, rangeland, agriculture and human health. Design/methodology/approach A household survey with 300 interviewees and focus group discussions with key stakeholders were conducted and validated at two steps, using the climate data from the nearest weather stations and reviewing literatures, to correlate the local perceptions on climate change and its impacts. Findings Majority of the respondents reported an increase in temperature and change in the precipitation pattern with increased hazardous incidences such as floods, avalanches and landslides. Climate change directly impacted plant distribution, species composition, disease and pest infestation, forage availability, agricultural productivity and human health risks related to infectious vector-borne diseases. Research limitations/implications Because of the remoteness and difficult terrain, there are insufficient local weather stations in the mountains providing inadequate scientific data, thus requiring extrapolation from nearest stations for long-term climate data monitoring. Practical implications The research findings recommend taking immediate actions to develop local climate change adaptation strategies through a participatory approach that would enable local communities to strengthen their adaptive capacity and resilience. Social implications Local knowledge-based perceptions on climate change and its impacts on social, ecological and economic sectors could help scientists, practitioners and policymakers to understand the ground reality and respond accordingly through effective planning and implementing adaptive measures including policy formulation. Originality/value This research focuses on combining local knowledge-based perceptions and climate science to elaborate the impacts of climate change in a localised context in Rakaposhi Valley in Karakoram Mountains of Pakistan.
This study was carried out to analyze the carbon content in different parts of Alnus nepalensis, and to assess the effect of aspect and altitude in the carbon storage in Alnus nepalensis as well as to quantify the total carbon sequestration (stock) in Alnus nepalensis forest in the mid-hills of Kaski District. The inventory for estimating above and below ground biomass of forest was carried out using stratified random sampling technique. The carbon content in different parts of Alnus nepalensis was quantified using combustion method in the laboratory. For determining the soil carbon content, six soil profiles from each aspect were excavated and soil samples were taken from soil profile up to 1 m depth for deep soil and up to bedrock for shallow soils at the interval of 20 cm. Mean carbon content in stem, branches, leaves and bark of Alnus nepalensis were found to be 40.52%, 33%, 9.56% and 16.4%, respectively. Total biomass carbon sequestered in northern aspect was 30.20 t/ha while for southern aspect it was 39.00 t/ha. In both the aspects higher carbon sequestration was observed at an elevation range of 1200-1300m i.e. 34.8 t/ha and 45.6 t/ha in northern and southern aspects, respectively. Soil carbon sequestration in northern and southern aspects was found to be 113.4 t/ha and 169.30 t/ ha, respectively. The total carbon sequestration potential of Alnus nepalensis forest was estimated to be 186.05 t/ha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.