The effect of 24-epibrassinolide and 28-homobrassinolide on seed germination and seedling growth of radish (Raphanus sativus L.) was studied under cadmium toxicity. The impact of brassinosteroids (BRs) on free proline levels and the activity of antioxidant enzymes catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7), superoxide dismutase (SOD; EC 1.15.1.1), ascorbic peroxidase (APOX; EC 1.11.1.11) and guaiacol peroxidase (GPX; EC 1.11.1.7) in radish seedlings under Cd toxicity was evaluated. The effect of BRs on the activity of ascorbic acid oxidase (AAO; EC 1.10.3.3) and lipid peroxidation in radish seedlings challenged with Cd stress was also investigated. BRs supplementation alleviated the toxic effect of the heavy metal and increased the percentage of seed germination and seedling growth. Out of the two substances, HBL was found to be more effective than EBL in stress alleviation. HBL (3µM) alleviated the toxic effect of the heavy metal and increased the percentage of seed germination by 57% over Cd and 20% over unstressed control. Similarly supplementation of HBL (3µM) caused an increase of 156%, 78% and 91% in length, fresh weight and dry weight of seedling, respectively, over Cd treatment alone. The amelioration of seedling growth by BRs under metal toxicity was associated with enhanced levels of free proline. The activities of antioxidant enzymes CAT, SOD, APOX and GPX were increased in the seedlings from treatments with Cd along with BRs. Brassinosteroid treatment reduced the activity of POD and AAO in heavy metal stressed seedlings. Lipid peroxidation induced by Cd was found reduced with the supplementation of BRs. The results obtained in the study clearly indicated the ameliorative influence of brassinosteroids on the inhibitory effect of Cd toxicity.
This study elaborates the consequences of oxidative stress caused by copper oxide (CuO) and titanium dioxide (TiO2) nanoparticles (NPs) in Brassica juncea. Effect of these two NPs on plant physiology, reactive oxygen scavenging enzyme system (ascorbate peroxidase, catalase, superoxide dismutase), proline content and lipid peroxidation has been estimated in leaves as well as root tissues. Bioaccumulation of NPs has also been evaluated in the current study and the interrelated cascade of the enzymatic system with H2O2 production was identified. The uptake of NPs in plant leaves was confirmed by scanning electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy. Plant growth was found to be diminished with elevated levels of CuO NPs whereas TiO2 NPs had shown an opposite effect. The plant species accumulated lower concentration of NPs and displayed considerable tolerance against stress, probably due to well-organized and coordinated defense system at the root and shoot level by the intonation of antioxidative enzymes.Electronic supplementary materialThe online version of this article (doi:10.1007/s13205-016-0550-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.