Objectives: Sepsis is a major public health concern with significant morbidity, mortality, and healthcare expenses. Early detection and antibiotic treatment of sepsis improve outcomes. However, although professional critical care societies have proposed new clinical criteria that aid sepsis recognition, the fundamental need for early detection and treatment remains unmet. In response, researchers have proposed algorithms for early sepsis detection, but directly comparing such methods has not been possible because of different patient cohorts, clinical variables and sepsis criteria, prediction tasks, evaluation metrics, and other differences. To address these issues, the PhysioNet/Computing in Cardiology Challenge 2019 facilitated the development of automated, open-source algorithms for the early detection of sepsis from clinical data. Design: Participants submitted containerized algorithms to a cloud-based testing environment, where we graded entries for their binary classification performance using a novel clinical utility-based evaluation metric. We designed this scoring function specifically for the Challenge to reward algorithms for early predictions and penalize them for late or missed predictions and for false alarms. Setting: ICUs in three separate hospital systems. We shared data from two systems publicly and sequestered data from all three systems for scoring. Patients: We sourced over 60,000 ICU patients with up to 40 clinical variables for each hour of a patient’s ICU stay. We applied Sepsis-3 clinical criteria for sepsis onset. Interventions: None. Measurements and Main Results: A total of 104 groups from academia and industry participated, contributing 853 submissions. Furthermore, 90 abstracts based on Challenge entries were accepted for presentation at Computing in Cardiology. Conclusions: Diverse computational approaches predict the onset of sepsis several hours before clinical recognition, but generalizability to different hospital systems remains a challenge.
Sepsis remains a leading cause of morbidity and mortality among intensive care unit (ICU) patients. For each hour treatment initiation is delayed after diagnosis, sepsis-related mortality increases by approximately eight percent. Therefore, maximizing effective care requires early recognition and initiation of treatment protocols. Antecedent signs and symptoms of sepsis can be subtle and unrecognizable (e.g., loss of autonomic regulation of vital signs), causing treatment delays and harm to the patient. In this work we investigated the utility of high-resolution blood pressure (BP) and heart rate (HR) times series dynamics for the early prediction of sepsis in patients from an urban, academic hospital, meeting the third international consensus definition of sepsis (sepsis-III) during their ICU admission. Using a multivariate modeling approach we found that HR and BP dynamics at multiple time-scales are independent predictors of sepsis, even after adjusting for commonly measured clinical values and patient demographics and comorbidities. Earlier recognition and diagnosis of sepsis has the potential to decrease sepsis-related morbidity and mortality through earlier initiation of treatment protocols.
Detection of atrial fibrillation (AF), a type of cardiac arrhythmia, is difficult since many cases of AF are usually clinically silent and undiagnosed. In particular paroxysmal AF is a form of AF that occurs occasionally, and has a higher probability of being undetected. In this work, we present an attention based deep learning framework for detection of paroxysmal AF episodes from a sequence of windows. Time-frequency representation of 30 seconds recording windows, over a 10 minute data segment, are fed sequentially into a deep convolutional neural network for image-based feature extraction, which are then presented to a bidirectional recurrent neural network with an attention layer for AF detection. To demonstrate the effectiveness of the proposed framework for transient AF detection, we use a database of 24 hour Holter Electrocardiogram (ECG) recordings acquired from 2850 patients at the University of Virginia heart station. The algorithm achieves an AUC of 0.94 on the testing set, which exceeds the performance of baseline models. We also demonstrate the cross-domain generalizablity of the approach by adapting the learned model parameters from one recording modality (ECG) to another (photoplethysmogram) with improved AF detection performance. The proposed high accuracy, low false alarm algorithm for detecting paroxysmal AF has potential applications in long-term monitoring using wearable sensors. KEYWORDSatrial fibrillation, convolutional neural network, recurrent neural network, deep learning, transfer learning arXiv:1805.09133v1 [q-bio.NC]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.