Background: Cancer still remains a disease of concern with various side effects of synthetic chemotherapeutic agents. Hence, there is a continued need to develop safer therapies with fewer side effects. Erythroxylum species is a widely available source of various phytoconstituents, especially terpenoids. Objective: To carry out the docking studies of a few terpenoids on validated targets like EGFR, VEGFR, CDK, and tubulin protein which are overexpressed in many types of cancers, and to estimate the pharmacokinetic and drug-likeness properties of these molecules using in silico techniques. Materials: Protein structures were retrieved from Protein Data Bank, and the terpenoids were docked on each of the protein targets using Autodock 4.2. SwissADME was used to predict the pharmacokinetic and drug-likeness properties Results: Compounds show good binding affinity and inhibition constant for all targets except for tubulin, where few ligands could bind. They exhibit an excellent pharmacokinetic profile, and no significant violations in drug-likeness parameters were observed. Conclusion: Compound 2 was found to be the most active agent against VEGFR, CDK, and tubulin, whereas compound 7 was most effective at EGFR. These compounds can be continued for further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.