Nanoparticles have been conjugated to biological systems for numerous applications such as self-assembly, sensing, imaging, and therapy. Development of more reliable and robust biosensors that exhibit high response rate, increased detection limit, and enhanced useful lifetime is in high demand. We have developed a sensing platform by the conjugation of β-galactosidase, a crucial enzyme, with lab-synthesized gel-like carbon dots (CDs) which have high luminescence, photostability, and easy surface functionalization. We found that the conjugated enzyme exhibited higher stability towards temperature and pH changes in comparison to the native enzyme. This enriched property of the enzyme was distinctly used to develop a stable, reliable, robust biosensor. The detection limit of the biosensor was found to be 2.9 × 10−4 M, whereas its sensitivity was 0.81 µA·mmol−1·cm−2. Further, we used the Langmuir monolayer technique to understand the surface properties of the conjugated enzyme. It was found that the conjugate was highly stable at the air/subphase interface which additionally reinforces the suitability of the use of the conjugated enzyme for the biosensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.