Little research has focused on treatment of cows with subclinical mastitis during lactation. Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use that inhibits bacterial cell wall synthesis by interfering with enzymes essential for peptidoglycan synthesis. Ceftiofur should be effective against a wide range of contagious and environmental mastitis pathogens. Objectives of the present study were to evaluate the efficacy of ceftiofur for treatment of subclinical mastitis in lactating dairy cows, and to determine if extended therapy regimens enhanced efficacy of ceftiofur. Holstein and Jersey dairy cows (n = 88) from 3 dairy research herds were used. Cows were enrolled in the study based on milk somatic cell counts >400,000/mL and isolation of the same mastitis pathogen in 2 samples obtained 1 wk apart. Cows with one or more intramammary infections (IMI) were blocked by parity and DIM and allocated randomly to 1 of 3 different ceftiofur treatment regimens: 2-d (n = 49 IMI), 5-d (n = 41 IMI), and 8-d (n = 38 IMI) treatment regimens. For all groups, 125 mg of ceftiofur hydrochloride was administered via intramammary infusion. Eighteen cows with 38 IMI were included as an untreated negative control group. A bacteriological cure was defined as a treated infected mammary quarter that was bacteriologically negative for the presence of previously identified bacteria at 14 and 28 d after the last treatment. Efficacy of ceftiofur therapy against all subclinical IMI was 38.8, 53.7, and 65.8% for the 2-, 5-, and 8-d ceftiofur treatment regimens, respectively. Four of 38 (10.5%) IMI in control cows were cured spontaneously without treatment. All 3 ceftiofur treatment regimens were significantly better than the negative control, and the 8-d extended ceftiofur treatment regimen treatment group was significantly better than the standard 2-d treatment group. Pathogen groups had significantly different cure rates from one another. The cure rate for the 8-d extended ceftiofur treatment regimen was 70% for Corynebacterium bovis, 86% for coagulase-negative Staphylococcus species, 36% for Staph. aureus, 80% for Streptococcus dysgalactiae ssp. dysgalactiae, and 67% for Strep. uberis.
Streptococcus uberis is an important cause of mastitis in dairy cows throughout the world, particularly during the dry period, the period around calving, and during early lactation. Strategies for controlling Strep. uberis mastitis are poorly defined and are currently inadequate. Objectives of the present study were to evaluate efficacy of ceftiofur, a new broad-spectrum cephalosporin antibiotic, for treatment of experimentally induced Strep. uberis intramammary infections (IMI) in lactating dairy cows during early lactation and to determine whether extended therapy regimens enhanced efficacy of ceftiofur. Efficacy of extended ceftiofur intramammary therapy regimens was investigated in 37 mammary quarters of 23 dairy cows that developed clinical mastitis following experimental infection with Strep. uberis during early lactation. Cows that developed clinical mastitis during the challenge period were allocated randomly to 3 groups representing 3 different ceftiofur treatment regimens: 2-d (n = 7 mammary quarters), 5-d (n = 16 mammary quarters), and 8-d (n = 14 mammary quarters) treatment regimens. For all groups, 125 mg of ceftiofur hydrochloride was administered via intramammary infusion. A bacteriological cure was defined as an experimentally infected quarter that was treated and was bacteriologically negative for the presence of Strep. uberis at 7, 14, 21, and 28 d posttreatment. Percentage of Strep. uberis IMI eliminated was 43, 88, and 100% for the 2-, 5-, and 8-d ceftiofur treatment regimens, respectively. Both the 5- and 8-d ceftiofur extended therapy treatment regimens had significantly higher bacterial cure rates than the standard 2-d ceftiofur treatment regimen. The bacterial cure rate of the 8-d ceftiofur extended therapy group was marginally better (P = 0.052) than the 5-d ceftiofur extended therapy group. Results of this study indicate that ceftiofur therapy was effective for eliminating Strep. uberis experimental IMI, and 5- and 8-d extended ceftiofur therapy regimens were more effective than the standard 2-d treatment.
The prevalence of selected tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae (n = 80) isolated from dairy farm soil and nondairy soils was evaluated. Among 56 bacteria isolated from dairy farm soils, 36 (64.3%) were resistant to tetracycline, and 17 (30.4%) were resistant to streptomycin. Lower frequencies of tetracycline (9 of 24 or 37.5%) and streptomycin (1 of 24 or 4.2%) resistance were observed in bacteria isolated from nondairy soils. Bacteria (n = 56) isolated from dairy farm soil had a higher frequency of tetracycline resistance genes including tetM (28.6%), tetA (21.4%), tetW (8.9%), tetB (5.4%), tetS (5.4%), tetG (3.6%), and tetO (1.8%). Among 24 bacteria isolated from nondairy soils, four isolates carried tetM, tetO, tetS, and tetW in different combinations; whereas tetA, tetB, and tetG were not detected. Similarly, a higher prevalence of streptomycin resistance genes including strA (12.5%), strB (12.5%), ant(3'') (12.5), aph(6)-1c (12.5%), aph(3'') (10.8%), and addA (5.4%) was detected in bacteria isolated from dairy farm soils than in nondairy soils. None of the nondairy soil isolates carried aadA gene. Other tetracycline (tetC, tetD, tetE, tetK, tetL, tetQ, and tetT) and streptomycin (aph(6)-1c and ant(6)) resistance genes were not detected in both dairy and nondairy soil isolates. A higher distribution of multiple resistance genes was observed in bacteria isolated from dairy farm soil than in nondairy soil. Among 36 tetracycline- and 17 streptomycin-resistant isolates from dairy farm soils, 11 (30.6%) and 9 (52.9%) isolates carried multiple resistance genes encoding resistance to tetracycline and streptomycin, respectively, which was higher than in bacteria isolated from nondairy soils. One strain each of Citrobacter freundii and C. youngae isolated from dairy farm soils carried class 1 integrons with different inserted gene cassettes. Results of this small study suggest that the presence of multiple resistance genes and class 1 integrons in Enterobacteriaceae in dairy farm soil may act as a reservoir of antimicrobial resistance genes and could play a role in the dissemination of these antimicrobial resistance genes to other commensal and indigenous microbial communities in soil. However, additional longer-term studies conducted in more locations are needed to validate this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.