BackgroundIn recent years the Illumina HumanMethylation450 (HM450) BeadChip has provided a user-friendly platform to profile DNA methylation in human samples. However, HM450 lacked coverage of distal regulatory elements. Illumina have now released the MethylationEPIC (EPIC) BeadChip, with new content specifically designed to target these regions. We have used HM450 and whole-genome bisulphite sequencing (WGBS) to perform a critical evaluation of the new EPIC array platform.ResultsEPIC covers over 850,000 CpG sites, including >90 % of the CpGs from the HM450 and an additional 413,743 CpGs. Even though the additional probes improve the coverage of regulatory elements, including 58 % of FANTOM5 enhancers, only 7 % distal and 27 % proximal ENCODE regulatory elements are represented. Detailed comparisons of regulatory elements from EPIC and WGBS show that a single EPIC probe is not always informative for those distal regulatory elements showing variable methylation across the region. However, overall data from the EPIC array at single loci are highly reproducible across technical and biological replicates and demonstrate high correlation with HM450 and WGBS data. We show that the HM450 and EPIC arrays distinguish differentially methylated probes, but the absolute agreement depends on the threshold set for each platform. Finally, we provide an annotated list of probes whose signal could be affected by cross-hybridisation or underlying genetic variation.ConclusionThe EPIC array is a significant improvement over the HM450 array, with increased genome coverage of regulatory regions and high reproducibility and reliability, providing a valuable tool for high-throughput human methylome analyses from diverse clinical samples.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1066-1) contains supplementary material, which is available to authorized users.
MicroRNAs (miRNAs) are B22 nt non-coding RNAs that typically bind to the 3 0 UTR of target mRNAs in the cytoplasm, resulting in mRNA destabilization and translational repression. Here, we report that miRNAs can also regulate gene expression by targeting non-coding antisense transcripts in human cells. Specifically, we show that miR-671 directs cleavage of a circular antisense transcript of the Cerebellar Degeneration-Related protein 1 (CDR1) locus in an Ago2-slicer-dependent manner. The resulting downregulation of circular antisense has a concomitant decrease in CDR1 mRNA levels, independently of heterochromatin formation. This study provides the first evidence for non-coding antisense transcripts as functional miRNA targets, and a novel regulatory mechanism involving a positive correlation between mRNA and antisense circular RNA levels.
BackgroundThe identification and characterisation of differentially methylated regions (DMRs) between phenotypes in the human genome is of prime interest in epigenetics. We present a novel method, DMRcate, that fits replicated methylation measurements from the Illumina HM450K BeadChip (or 450K array) spatially across the genome using a Gaussian kernel. DMRcate identifies and ranks the most differentially methylated regions across the genome based on tunable kernel smoothing of the differential methylation (DM) signal. The method is agnostic to both genomic annotation and local change in the direction of the DM signal, removes the bias incurred from irregularly spaced methylation sites, and assigns significance to each DMR called via comparison to a null model.ResultsWe show that, for both simulated and real data, the predictive performance of DMRcate is superior to those of Bumphunter and Probe Lasso, and commensurate with that of comb-p. For the real data, we validate all array-derived DMRs from the candidate methods on a suite of DMRs derived from whole-genome bisulfite sequencing called from the same DNA samples, using two separate phenotype comparisons.ConclusionsThe agglomeration of genomically localised individual methylation sites into discrete DMRs is currently best served by a combination of DM-signal smoothing and subsequent threshold specification. The findings also suggest the design of the 450K array shows preference for CpG sites that are more likely to be differentially methylated, but its overall coverage does not adequately reflect the depth and complexity of methylation signatures afforded by sequencing.For the convenience of the research community we have created a user-friendly R software package called DMRcate, downloadable from Bioconductor and compatible with existing preprocessing packages, which allows others to apply the same DMR-finding method on 450K array data.Electronic supplementary materialThe online version of this article (doi:10.1186/1756-8935-8-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.