In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Endothelial progenitor cells (EPCs) have been shown to participate in tissue repair under diverse physiological and pathological conditions. It is unknown whether EPCs are mobilized in response to acute renal injury. The aim of this study was to characterize EPC mobilization and homing in the course of acute renal ischemia. Mice were subjected to unilateral renal artery clamping (UC) for 25 min. At 10 min, 3, 6, 24 h, and 7 days after UC, the pool of circulating and splenic CD34+/Flk-1+ cells within the monocytic population was detected by flow cytometry. For ischemic preconditioning (IPC), the first UC was performed 7 days before the repeated ischemic episode. For EPC detection in the kidney, cryosections were stained for c-Kit+/Tie-2+ cells. The number of circulating EPCs was not significantly affected at any time after UC compared with sham-operated or control mice. IPC did not significantly change the circulating pool of EPCs. Splenectomy performed before UC resulted in a surge of circulating EPCs. Accordingly, splenic EPCs were significantly increased after UC at 3 and 6 h, but not at later times. EPC homing to the spleen was absent in IPC animals. Immunohistochemical analysis of the kidneys showed a sixfold increase in the number of c-Kit+/Tie-2+ cells localized in the medullopapillary region in mice by day 7 after ischemia. Enriched population of c-Kit+/Tie-2+ cells from the medullopapillary parenchyma of Tie-2green fluorescent protein chimeric mice subjected to IPC was isolated and transplanted to wild-type mice with acute renal ischemia. This procedure resulted in the improvement of renal function in recipients. In conclusion, 1) renal ischemia rapidly (within 3-6 h) mobilizes EPCs, which transiently home to the spleen, acting as a temporary reservoir of mobilized EPCs; 2) the late phase of IPC is associated with the mobilization of the splenic pool and accumulation of EPCs in the renal medullopapillary region; and 3) transplantation of EPC-enriched cells from the medullopapillary parenchyma afforded partial renoprotection after renal ischemia, suggesting the role of the recruited EPCs in the functional rescue.
Chronic kidney diseases are accompanied by the accumulation of substances like asymmetric dimethylarginine, phenylacetic acid, homocysteine, and advanced glycation end products, known to either inhibit endothelial nitric oxide synthase (eNOS) or uncouple it, consequently limiting the amount of available nitric oxide (NO). Reduced bioavailability of NO induces endothelial dysfunction. An early loss of peritubular capillaries in tubulointerstitial fibrotic areas and injury to endothelial cells have been linked to progressive renal disease. Screening endothelial genes in cells treated with NOS inhibitors showed upregulation of collagen XVIII, a precursor of a potent antiangiogenic substance, endostatin. This finding was confirmed at the level of mRNA and protein expression. Tie-2 promoter-driven green fluorescent protein mice treated with nonhypertensinogenic doses of a NOS inhibitor exhibited upregulation of collagen XVIII/endostatin and rarefaction of capillary profiles. This was accompanied by the increased expression of transforming growth factor-beta and connective tissue growth factor in the kidney. Occasional endothelial cells expressed both the marker of endothelial lineage (green fluorescent protein) and mesenchymal marker (alpha-smooth muscle actin or calponin). In vitro studies of endothelial cells treated with asymmetric dimethylarginine showed decreased expression of eNOS and Flk-1 and enhanced expression of calponin and fibronectin, additional markers of smooth muscle and mesenchymal cells. These cells overexpressed transforming growth factor-beta and connective tissue growth factor, as well as endostatin. In conclusion, data presented here 1) ascribe to NO deficiency in endothelial cells the function of a profibrotic stimulus associated with the expression of an antiangiogenic fragment of collagen XVIII (endostatin) and 2) provide evidence of endothelial-mesenchymal transdifferentiation in the course of inhibition of NOS by a pathophysiologically important antagonist, asymmetric dimethylarginine. Both mechanisms may account for microvascular rarefaction.
Understanding the nature of endogenous mechanisms for mobilization of stem/progenitor cells is predicated on the identification of injury-induced substances that are released from a damaged organ and capable of producing a distant effect. Although different substances that mobilize endothelial progenitor cells (EPCs) have been proposed, their potential to signal injury and afford postischemic renoprotection and repair remains obscure. Uric acid (UA) is consistently overproduced by ischemic tissues and has been shown to exert immunomodulatory functions. It was hypothesized that UA and/or its precursors might serve as injury signals that are capable of mobilizing EPCs in acute renal ischemia. Indeed, FVB/NJ mice that were subjected to acute renal ischemia showed a transient surge in UA level in the peripheral blood. Single-dose treatment with UA, as well as acute hyperuricemia induced by the inhibition of uricase, caused a robust mobilization of EPCs, whereas administration of adenosine or inosine seemed to lack this effect. Moreover, pretreatment of mice with a single dose of UA afforded significant renoprotection against ischemic injury. In animals with chronic hyperuricemia (induced by continuous 2-wk treatment with a uricase inhibitor oxonic acid), EPC mobilization was blunted and renoprotective effects were absent. In conclusion, acute elevation of UA acts as "physiologic," fast-acting endogenous mediator of EPC mobilization and renoprotection, consistent with its novel function in pharmacologic preconditioning. Both of these actions are lacking in mice with chronic hyperuricemia. In summary, a transient surge in UA concentration may serve as a universal herald of tissue injury to accelerate the recruitment of EPCs.
Our group (Patschan S, Chen J, Gealekman O, Krupincza K, Wang M, Shu L, Shayman JA, Goligorsky MS; Am J Physiol Renal Physiol 294: F100-F109, 2008) previously observed an accumulation of gangliosides coincident with development of cell senescence and demonstrated lysosomal permeabilization in human umbilical vein endothelial cells exposed to glycated collagen I (GC). Therefore, we investigated whether the lysosome-dependent, caspase-independent or type 2-programmed cell death (autophagy) is involved in development of premature senescence of endothelial cells. The cleaved microtubule-associated protein 1 light-chain 3 (LC3), a marker of autophagosome formation, was overexpressed within 24 h of GC treatment; however, by 4-5 days, it was nearly undetectable. Early induction of autophagosomes was associated with their fusion with lysosomes, a phenomenon that later became subverted. Autophagic cell death can be triggered by the products of damaged plasma membrane, sphingolipids, and ceramide. We observed a clustering of membrane rafts shortly after exposure to GC; later, after 24 h, we observed an internalization, accompanied by an increased acid sphingomyelinase activity and accumulation of ceramide. Pharmacological inhibition of autophagy prevented development of premature senescence but did lead to the enhanced rate of apoptosis in human umbilical vein endothelial cells exposed to GC. Pharmacological induction of autophagy resulted in reciprocal changes. These observations appear to represent a mechanistic molecular cascade whereby advanced glycation end products like GC induce sphingomyelinase activity, accumulation of ceramide, clustering, and later internalization of lipid rafts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.