Ceramides increase during obesity and promote insulin resistance. Ceramides vary in acyl-chain lengths from C14:0 to C30:0 and are synthesized by six ceramide synthase enzymes (CerS1-6). It remains unresolved whether obesity-associated alterations of specific CerSs and their defined acyl-chain length ceramides contribute to the manifestation of metabolic diseases. Here we reveal that CERS6 mRNA expression and C16:0 ceramides are elevated in adipose tissue of obese humans, and increased CERS6 expression correlates with insulin resistance. Conversely, CerS6-deficient (CerS6(Δ/Δ)) mice exhibit reduced C16:0 ceramides and are protected from high-fat-diet-induced obesity and glucose intolerance. CerS6 deletion increases energy expenditure and improves glucose tolerance, not only in CerS6(Δ/Δ) mice, but also in brown adipose tissue- (CerS6(ΔBAT)) and liver-specific (CerS6(ΔLIVER)) CerS6 knockout mice. CerS6 deficiency increases lipid utilization in BAT and liver. These experiments highlight CerS6 inhibition as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition.
c-Jun N-terminal kinase (JNK) 1-dependent signaling plays a crucial role in the development of obesity-associated insulin resistance. Here we demonstrate that JNK activation not only occurs in peripheral tissues, but also in the hypothalamus and pituitary of obese mice. To resolve the importance of JNK1 signaling in the hypothalamic/pituitary circuitry, we have generated mice with a conditional inactivation of JNK1 in nestin-expressing cells (JNK1 ΔNES mice). JNK1 ΔNES mice exhibit improved insulin sensitivity both in the CNS and in peripheral tissues, improved glucose metabolism, as well as protection from hepatic steatosis and adipose tissue dysfunction upon high-fat feeding. Moreover, JNK1 ΔNES mice also show reduced somatic growth in the presence of reduced circulating growth hormone (GH) and insulin-like growth factor 1 (IGF1) concentrations, as well as increased thyroid axis activity. Collectively, these experiments reveal an unexpected, critical role for hypothalamic/pituitary JNK1 signaling in the coordination of metabolic/endocrine homeostasis.brain | diabetes | obesity | inflammation | insulin resistance
Highlights d Mechanisms of membrane assembly during autophagosome biogenesis were discovered d Acyl-CoA synthetase Faa1 channels fatty acids into de novo phospholipid synthesis d Newly synthesized phospholipids specifically drive phagophore expansion d Description of the phospholipid composition of purified autophagic membranes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.