Alternative splicing can produce multiple protein products with variable domain composition from a single gene. The mouse Tcf7l2 gene is subject to alternative splicing. It encodes TCF4, a member of the T-cell factor (TCF) family of DNA-binding proteins and a nuclear interaction partner of β-catenin which performs essential functions in Wnt growth factor signalling. Multiple TCF4 isoforms, potentially exhibiting cell-type-specific distribution and differing in gene regulatory properties, could strongly influence tissue-specific Wnt responses. Therefore, we have examined mouse Tcf7l2 splice variants in neonatal tissues, embryonic stem cells and neural progenitors. By polymerase chain reaction amplification, cloning and sequencing, we identify a large number of alternatively spliced transcripts and report a highly flexible combinatorial repertoire of alternative exons. Many, but not all of the variants exhibit a broad tissue distribution. Moreover, two functionally equivalent versions of the C-clamp, thought to represent an auxiliary DNA-binding domain, were identified. Depending upon promoter context and precise domain composition, TCF4 isoforms exhibit strikingly different transactivation potentials at natural Wnt/β-catenin target promoters. However, differences in C-clamp-mediated DNA binding can only partially explain functional differences among TCF4 variants. Still, the cell-type-specific complement of TCF4 isoforms is likely to be a major determinant for the context-dependent transcriptional output of Wnt/β-catenin signalling.
Dominant-negative interference by glycine substitution mutations in the COL7A1 gene causes dominant dystrophic epidermolysis bullosa (DDEB), a skin fragility disorder with mechanically induced blistering. Although qualitative and quantitative alterations of the COL7A1 gene product, collagen VII, underlie DDEB, the lack of direct correlation between mutations and the clinical phenotype has rendered DDEB less amenable to therapeutic targeting. To delineate the molecular mechanisms of DDEB, we used recombinant expression of wildtype (WT) and mutant collagen VII, which contained a naturally occurring COL7A1 mutation, G1776R, G2006D, or G2015E, for characterization of the triple helical molecules. The mutants were co-expressed with WT in equal amounts and could form heterotrimeric hybrid triple helices, as demonstrated by affinity purification and mass spectrometry. The thermal stability of the mutant molecules was strongly decreased, as evident in their sensitivity to trypsin digestion. The helix-to-coil transition, T m , of the mutant molecules was 31-34°C, and of WT collagen VII 41°C. Co-expression of WT with G1776R-or G2006D-collagen VII resulted in partial intracellular retention of the collagen, and mutant collagen VII had reduced ability to support cell adhesion. Intriguingly, controlled overexpression of WT collagen VII gradually improved the thermal stability of the collective of collagen VII molecules. Co-expression in a ratio of 90% WT:10% mutant increased the T m to 41°C for G1776R-collagen VII and to 39°C for G2006D-and G2015E-collagen VII. Therefore, increasing the expression of WT collagen VII in the skin of patients with DDEB can be considered a valid therapeutic approach.Mutations in the collagen VII gene, COL7A1, cause dystrophic epidermolysis bullosa (DEB), 3 a heritable skin fragility disorder characterized by mechanically induced blistering of the skin and mucosa, and excessive scarring (1). DEB is classified into clinical subtypes with dominant or recessive inheritance (2), and so far more than 400 different COL7A1 mutations are known, which underlie a broad spectrum of clinical presentations. Collagen VII is the major molecular constituent of anchoring fibrils in the skin. These centro-symmetrically banded fibrils extend from the epidermal basement membrane into the underlying dermal stroma and connect the epidermis to the dermis. Collagen VII is synthesized as three identical pro-␣1(VII) polypeptide chains, which are hydroxylated and glycosylated in a coordinated manner and then fold into triple-helical procollagen VII in the endoplasmic reticulum (ER). The procollagen, which contains a central collagenous triple-helix flanked by two non-collagenous domains, NC-1 and NC-2, is secreted into the extracellular space, where the C-terminal NC-2 propeptide is proteolytically removed by bone morphogenetic protein-1 (3). Subsequently, mature collagen VII undergoes a multistep fibril polymerization process to form the anchoring fibrils (4).The pathology in DDEB has been thought to result from negative ...
Our results suggest that epitopes within the T-H collagenous domain of type VII collagen are recognized by IgG antibodies from some EBA sera. These antibodies appear to be found in patients with inflammatory-type EBA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.