Wireless sensor networks (WSNs) have a wide range of applications in various fields. One of the most recent emerging applications are in the world of Internet of Things (IoT), which allows inter-connection of different objects or devices through the Internet. However, limited battery power is the major concern of WSNs as compared to mobile ad-hoc network, which affects the longevity of the network. Hence, a lot of research has been focused on to minimise the energy consumption of the WSNs. Designing of a hierarchical clustering algorithm is one of the numerous approaches to minimise the energy of the WSNs. In this study, the existing low-energy adaptive clustering hierarchy (LEACH) clustering protocol is modified by introducing a threshold limit for cluster head selection with simultaneously switching the power level between the nodes. The proposed modified LEACH protocol outperforms as compared to the existing LEACH protocol with 67% rise in throughput and extending the number of alive nodes to 1750 rounds which can be used to enhance the WSN lifetime. When compared with other energy efficient protocols, it is found that the proposed algorithm performs better in terms of stability period and network lifetime in different scenarios of area, energy and node density.
Wireless Sensor Networks (WSN) is a virtual layer in the paradigm of the Internet of Things (IoT). It inter-relates information associated with the physical domain to the IoT drove computational systems. WSN provides ubiquitous access to location, the status of different entities of the environment, and data acquisition for long-term IoT monitoring. Since energy is a major constraint in the design process of a WSN, recent advances have led to project various energy-efficient protocols. Routing of data involves energy expenditure in considerable amount. In recent times, various heuristic clustering protocols have been discussed to solve the purpose. This article is an improvement of the existing Stable Election Protocol (SEP) that implements a threshold-based cluster head selection for a heterogeneous network. The threshold maintains uniform energy distribution between member and cluster head nodes. The sensor nodes are also categorized into three different types called normal, intermediate and advanced depending on the initial energy supply to distribute the network load evenly. The simulation result shows that the proposed scheme outperforms SEP and DEEC protocols with an improvement of 300% in network lifetime and 56% in throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.