We numerically demonstrated that efficient wireless energy transfer can be achieved between two high Q resonators in a complex electromagnetic environment. In particular, in the close proximity of metallic planes, efficient wireless energy transfer can be achieved with proper system designs.
The advent of fully automated road vehicles is a topic currently getting attention in the field of transport as well as futures research: the technology is assumed to radically change the way we move in the future as well as to expand and differentiate existing mobility concepts. Still, the implications of automated driving are first and foremost discussed from a technological point of view and uncertainty about how this transition might take place remains. The embedding in the system of automobility respectively the transport system as a whole, currently lacks analytical as well as empirical examination. In our paper, we will discuss the topic in relation to three possible sociotechnical transition scenarios: (1) evolution, (2) revolution and (3) transformation. We will extrapolate different scenarios of automated driving based on current technical, economic, infrastructural, spatial, and transport developments and discuss its consequences for the transport system and mobility concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.