BackgroundEukaryotes display remarkable genome plasticity, which can include supernumerary chromosomes that differ markedly from the core chromosomes. Despite the widespread occurrence of supernumerary chromosomes in fungi, their origin, relation to the core genome and the reason for their divergent characteristics are still largely unknown. The complexity of genome assembly due to the presence of repetitive DNA partially accounts for this.ResultsHere we use single-molecule real-time (SMRT) sequencing to assemble the genome of a prominent fungal wheat pathogen, Fusarium poae, including at least one supernumerary chromosome. The core genome contains limited transposable elements (TEs) and no gene duplications, while the supernumerary genome holds up to 25 % TEs and multiple gene duplications. The core genome shows all hallmarks of repeat-induced point mutation (RIP), a defense mechanism against TEs, specific for fungi. The absence of RIP on the supernumerary genome accounts for the differences between the two (sub)genomes, and results in a functional crosstalk between them. The supernumerary genome is a reservoir for TEs that migrate to the core genome, and even large blocks of supernumerary sequence (>200 kb) have recently translocated to the core. Vice versa, the supernumerary genome acts as a refuge for genes that are duplicated from the core genome.ConclusionsFor the first time, a mechanism was determined that explains the differences that exist between the core and supernumerary genome in fungi. Different biology rather than origin was shown to be responsible. A “living apart together” crosstalk exists between the core and supernumerary genome, accelerating chromosomal and organismal evolution.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2941-6) contains supplementary material, which is available to authorized users.
Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.
Synchytrium endobioticum is an obligate biotrophic soilborne Chytridiomycota (chytrid) species that causes potato wart disease, and represents the most basal lineage among the fungal plant pathogens. We have chosen a functional genomics approach exploiting knowledge acquired from other fungal taxa and compared this to several saprobic and pathogenic chytrid species. Observations linked to obligate biotrophy, genome plasticity and pathogenicity are reported. Essential purine pathway genes were found uniquely absent in S. endobioticum , suggesting that it relies on scavenging guanine from its host for survival. The small gene-dense and intron-rich chytrid genomes were not protected for genome duplications by repeat-induced point mutation. Both pathogenic chytrids Batrachochytrium dendrobatidis and S. endobioticum contained the largest amounts of repeats, and we identified S. endobioticum specific candidate effectors that are associated with repeat-rich regions. These candidate effectors share a highly conserved motif, and show isolate specific duplications. A reduced set of cell wall degrading enzymes, and LysM protein expansions were found in S. endobioticum , which may prevent triggering plant defense responses. Our study underlines the high diversity in chytrids compared to the well-studied Ascomycota and Basidiomycota, reflects characteristic biological differences between the phyla, and shows commonalities in genomic features among pathogenic fungi.
In contrast to mammals and vascular plants, microalgae show a high diversity in the N-glycan structures of complex N-glycoproteins. Although homologues for β1,2-N-acetylglucosaminyltransferase I (GnTI), a key enzyme in the formation of complex N-glycans, have been identified in several algal species, GnTI-dependent N-glycans have not been detected so far. We have performed an N-glycoproteomic analysis of the hydrocarbon oils accumulating green microalgae Botryococcus braunii. Thereby, the analysis of intact N-glycopeptides allowed the determination of N-glycan compositions. Furthermore, insights into the role of N-glycosylation in B. braunii were gained from functional annotation of the identified N-glycoproteins. In total, 517 unique N-glycosylated peptides have been identified, including intact N-glycopeptides that harbored N-acetylhexosamine (HexNAc) at the nonreducing end. Surprisingly, these GnTI-dependent N-glycans were also found to be modified with (di)methylated hexose. The identification of GnTI-dependent N-glycans in combination with N-glycan methylation in B. braunii revealed an uncommon type of N-glycan processing in this microalgae.
Tripartite interactions among insect vectors, midgut bacteria, and viruses may determine the ability of insects to transmit pathogenic arboviruses. Here, we investigated the impact of gut bacteria on the susceptibility of Culicoides nubeculosus and Culicoides sonorensis biting midges for Schmallenberg virus, and of Aedes aegypti mosquitoes for Zika and chikungunya viruses. Gut bacteria were manipulated by treating the adult insects with antibiotics. The gut bacterial communities were investigated using Illumina MiSeq sequencing of 16S rRNA, and susceptibility to arbovirus infection was tested by feeding insects with an infectious blood meal. Antibiotic treatment led to changes in gut bacteria for all insects. Interestingly, the gut bacterial composition of untreated Ae. aegypti and C. nubeculosus showed Asaia as the dominant genus, which was drastically reduced after antibiotic treatment. Furthermore, antibiotic treatment resulted in relatively more Delftia bacteria in both biting midge species, but not in mosquitoes. Antibiotic treatment and subsequent changes in gut bacterial communities were associated with a significant, 1.8-fold increased infection rate of C. nubeculosus with Schmallenberg virus, but not for C. sonorensis. We did not find any changes in infection rates for Ae. aegypti mosquitoes with Zika or chikungunya virus. We conclude that resident gut bacteria may dampen arbovirus transmission in biting midges, but not so in mosquitoes. Use of antimicrobial compounds at livestock farms might therefore have an unexpected contradictory effect on the health of animals, by increasing the transmission of viral pathogens by biting midges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.