Medulloblastoma (MB) is the most common malignant solid paediatric brain tumour. The standard treatment for MB is surgical resection of the tumour, radiation and chemotherapy. This therapy is associated with high morbidity and adverse side effects. Hence, more targeted and less toxic therapies are vitally needed to improve the quality of life of survivors. NPI-0052 is a novel proteasome inhibitor that irreversibly binds the 20S proteasome subunit. This compound has anti-tumour activity in metastatic solid tumours, glioblastoma and multiple myeloma with a good safety profile. Importantly, NPI-0052 has a lipophilic structure and can penetrate the blood–brain barrier, making it a suitable treatment for brain tumours. In the present study, we performed an in silico gene expression analysis to evaluate the proteasome subunit expression in MB. To evaluate the anticancer activity of NPI-0052, we used a range of MB patient-derived MB cells and cell lines. The synergistic cell death of NPI-0052 with γ-radiation was evaluated in tumour organoids derived from patient-derived MB cells. We show that high expression of proteasome subunits is a poor prognostic factor for MB patients. Also, our preclinical work demonstrated that NPI-0052 can inhibit proteasome activity and activate apoptosis in MB cells. Moreover, we observe that NPI-0052 has a synergistic apoptotic effect with γ-radiation, a component of the current MB therapy. Here, we present compelling preclinical evidence that NPI-0052 can be used as an adjuvant treatment for p53-family-expressing MB tumours.
Nanotopography is an effective method to regulate cells' behaviors to improve Ti orthopaedic implants' in vivo performance. However, the mechanism underlying cellular matrix− nanotopography interactions that allows the modulation of cell adhesion has remained elusive. In this study, we have developed novel nanotopographic features on Ti substrates and studied human osteoblast (HOb) adhesion on nanotopographies to reveal the interactive mechanism regulating cell adhesion and spreading. Through nanoflat, nanoconvex, and nanoconcave TiO 2 nanotopographies, the evolution of Coulomb's force between the extracellular matrix and nanotopographies has been estimated and comparatively analyzed, along with the assessment of cellular responses of HOb. We show that HObs exhibited greater adhesion and spreading on nanoconvex surfaces where they formed super matured focal adhesions and an ordered actin cytoskeleton. It also demonstrated that Coulomb's force on nanoconvex features exhibits a more intense and concentrated evolution than that of nanoconcave features, which may result in a high dense distribution of fibronectin. Thus, this work is meaningful for novel Ti-based orthopaedic implants' surface designs for enhancing their in vivo performance.
Additively manufactured Ti scaffolds have been used for bone replacement and orthopaedic applications. In these applications, both morphological and mechanical properties are important for their in vivo performance. Additively manufactured Ti6Al4V triply periodic minimal surface (TPMS) scaffolds with diamond and gyroid structures are known to have high stiffness and high osseointegration properties, respectively. However, morphological deviations between the as-designed and as-built types of these scaffolds have not been studied before. In this study, the morphological and mechanical properties of diamond and gyroid scaffolds at macro and microscales were examined. The results demonstrated that the mean printed strut thickness was greater than the designed target value. For diamond scaffolds, the deviation increased from 7.5 μm (2.5% excess) for vertical struts to 105.4 μm (35.1% excess) for horizontal struts. For the gyroid design, the corresponding deviations were larger, ranging from 12.6 μm (4.2% excess) to 198.6 μm (66.2% excess). The mean printed pore size was less than the designed target value. For diamonds, the deviation of the mean pore size from the designed value increased from 33.1 μm (−3.0% excess) for vertical struts to 92.8 μm (−8.4% excess) for horizontal struts. The corresponding deviation for gyroids was larger, ranging from 23.8 μm (−3.0% excess) to 168.7 μm (−21.1% excess). Compressive Young’s modulus of the bulk sample, gyroid and diamond scaffolds was calculated to be 35.8 GPa, 6.81 GPa and 7.59 GPa, respectively, via the global compression method. The corresponding yield strength of the samples was measured to be 1012, 108 and 134 MPa. Average microhardness and Young’s modulus from α and β phases of Ti6Al4V from scaffold struts were calculated to be 4.1 GPa and 131 GPa, respectively. The extracted morphology and mechanical properties in this study could help understand the deviation between the as-design and as-built matrices, which could help develop a design compensation strategy before the fabrication of the scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.