There are numerous pathogens that can be transmitted through water. Identifying and understanding the routes and magnitude of exposure or infection to these microbial contaminants are critical to assessing and mitigating risk. Conventional approaches of studying immunological responses to exposure or infection such as Enzyme-Linked Immunosorbent Assays (ELISAs) and other monoplex antibody-based immunoassays can be very costly, laborious, and consume large quantities of patient sample. A major limitation of these approaches is that they can only be used to measure one analyte at a time. Multiplex immunoassays provide the ability to study multiple pathogens simultaneously in microliter volumes of samples. However, there are several challenges that must be addressed when developing these multiplex immunoassays such as selection of specific antigens and antibodies, cross-reactivity, calibration, protein-reagent interferences, and the need for rigorous optimization of protein concentrations. In this study, a Design of Experiments (DOE) approach was used to optimize reagent concentrations for coupling selected antigens to Luminex™ xMAP microspheres for use in an indirect capture, multiplex immunoassay to detect human exposure or infection from pathogens that are potentially transmitted through water. Results from Helicobacter pylori, Campylobacter jejuni, Escherichia coli O157:H7, and Salmonella typhimurium singleplexes were used to determine the mean concentrations that would be applied to the multiplex assay. Cut-offs to differentiate between exposed and non-exposed individuals were determined using finite mixed modeling (FMM). The statistical approaches developed facilitated the detection of Immunoglobulin G (IgG) antibodies to H. pylori, C. jejuni, Toxoplasma gondii, hepatitis A virus, rotavirus and noroviruses (VA387 and Norwalk strains) in fifty-four diagnostically characterized plasma samples. Of the characterized samples, the detection rate was 87.5% for H. pylori, and 100% for T. gondii assays and 89% for HAV. Further, the optimized multiplex assay revealed exposure/infection to several other environmental pathogens previously uncharacterized in the samples.
BackgroundSwimming in fecally-contaminated waterbodies can result in gastrointestinal infections. However, the pathogenic microorganisms responsible are not well understood because sporadic cases of illness are not reported completely, exposure information is often not collected, and epidemiology studies rely on self-reported symptoms. Noroviruses are considered a likely cause because they are found in high densities in sewage, resistant to wastewater treatment and survive in the environment. In this study, saliva samples were collected from subjects at a beach in Puerto Rico and tested for evidence of norovirus-specific IgG responses as an indicator of incident norovirus infection.MethodsSaliva samples were collected from 1298 participants using an oral swab. Samples were collected on the day of the beach visit (S1); after 10–12 days (S2); and after three weeks (S3). Saliva was tested for IgG responses to GI.1 and GII.4 noroviruses using a microsphere based multiplex salivary immunoassay. Immunoconversion was defined as a four-fold increase in median fluorescence intensity (MFI) from S1 to S2 with the S3 sample at least three times above the S1 MFI.ResultsThirty-four subjects (2.6%) immunoconverted to GI.1 or GII.4 norovirus. Swimmers who immersed their head in water had a higher rate of immunoconversion (3.4%), compared to either non-swimmers (0.0%, p = 0.003) or waders and non-swimmers combined (0.4%, Odds Ratio: 5.07, 95% Confidence Interval:1.48–17.00). Immunoconversion was not associated with gastrointestinal symptoms.ConclusionsThis is the first study to demonstrate an association between swimming at a beach impacted by fecal contamination and asymptomatic norovirus infection. The findings implicate recreational water as potentially important transmission pathway for norovirus infection.
The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. This manuscript describes the development and analysis of a bead-based multiplex immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using a bead-based, solution-phase assay. Beads were coupled with antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary capture antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen-coupled and control beads were then incubated with prospectively-collected human saliva samples, measured on a high throughput analyzer based on the principles of flow cytometry, and the presence of antibodies to each antigen was measured in Median Fluorescence Intensity units (MFI). This multiplex immunoassay has a number of advantages, including more data with less sample; reduced costs and labor; and the ability to customize the assay to many targets of interest. Results indicate that the salivary multiplex immunoassay may be capable of identifying previous exposures and infections, which can be especially useful in surveillance studies involving large human populations.
Norovirus is one of the most common causes of gastroenteritis. Following infection, anti-norovirus salivary immunoglobulin G (IgG) rises steeply within 2 weeks and remains elevated for several months; this immunoconversion can serve as an indicator of infection. We used a multiplex salivary immunoassay to study norovirus infections among 483 visitors to a Lake Michigan beach in 2015. Saliva was collected on the day of the beach visit (S1); after 10–14 days (S2); and after 30–40 days (S3). Luminex microspheres were coupled to recombinant antigens of genogroup I (GI) and II (GII) noroviruses and incubated with saliva. Immunoconversion was defined as at least 4-fold increase in anti-norovirus IgG antibody response from S1 to S2 and a 3-fold increase from S1 to S3. Ten (2.1%) immunoconverted to either GI (2) or GII (8) norovirus. Among those who immunoconverted, 40% reported at least one gastrointestinal symptom and 33% reported diarrhea, compared to 15% (p = 0.06) and 8% (p = 0.04) among those who did not immunoconvert, respectively. The two participants who immunoconverted to GI norovirus both swallowed water during swimming (p = 0.08). This study demonstrated the utility of a non-invasive salivary immunoassay to detect norovirus infections and an efficient approach to study infectious agents in large cohorts.
Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.