In insects, olfaction plays a crucial role in many behavioral contexts, such as locating food, sexual partners, and oviposition sites. To successfully perform such behaviors, insects must respond to chemical stimuli at the right moment. Insects modulate their olfactory system according to their physiological state upon interaction with their environment. Here, we review the plasticity of behavioral responses to different odor types according to age, feeding state, circadian rhythm, and mating status. We also summarize what is known about the underlying neural and endocrinological mechanisms, from peripheral detection to central nervous integration, and cover neuromodulation from the molecular to the behavioral level. We describe forms of olfactory plasticity that have contributed to the evolutionary success of insects and have provided them with remarkable tools to adapt to their ever-changing environment.
The antennal lobe of insects has emerged as an excellent model for olfactory processing in the CNS. In the present review we compile data from areas where substantial progress has been made during recent years: structure-function relationships within the glomerular array, integration and blend specificity, time coding and the effects of neuroactive substances and hormones on antennal lobe processing.
The first odor-processing neuropils of insects comprise glomeruli, islets of neuropil, that are supplied by olfactory receptor neurons and give rise to efferent axons to higher brain centers. Glomeruli size and organization varies in a taxon-specific manner across the Insecta, suggesting possible correlates between their organization and chemosensory behaviors in different insect groups. Comparative studies of antennal lobe glomeruli within the Orthoptera have been used to infer how the various taxon-specific arrangements of odorant-processing structures (glomeruli) might have evolved. The cellular arrangements in glomeruli have been surveyed using anterograde filling and Golgi impregnation of antennal receptor neurons projecting to the antennal lobe in Stenopelmatidae, Tettigoniidae, Gryllidae, Tetrigidae and Acrididae. These taxa, which represent the two sub-orders of Orthoptera, reveal a high correlation between the neural architecture of the glomeruli and structures within the glomeruli. Using a recent molecular phylogeny of the Orthoptera we have mapped the occurrence of glomerular characteristics to infer the evolution of antennal lobe structures in orthopterans. The functional implications of these results are discussed.
SUMMARYIn the moth, Agrotis ipsilon, newly mated males cease to be attracted to the female-produced sex pheromone, preventing them from re-mating until the next night, by which time they would have refilled their reproductive glands for a potential new ejaculate. The behavioural plasticity is accompanied by a decrease in neuron sensitivity within the primary olfactory centre, the antennal lobe (AL). However, it was not clear whether the lack of the sexually guided behaviour results from the absence of sex pheromone detection in the ALs, or if they ignore it in spite of detection, or if the sex pheromone itself inhibits attraction behaviour after mating. To test these hypotheses, we performed behavioural tests and intracellular recordings of AL neurons to non-pheromonal odours (flower volatiles), different doses of sex pheromone and their mixtures in virgin and newly mated males. Our results show that, although the behavioural and AL neuron responses to flower volatiles alone were similar between virgin and mated males, the behavioural response of mated males to flower odours was inhibited by adding pheromone doses above the detection threshold of central neurons. Moreover, we show that the sex pheromone becomes inhibitory by differential central processing: below a specific threshold, it is not detected within the AL; above this threshold, it becomes inhibitory, preventing newly mated males from responding even to plant odours. Mated male moths have thus evolved a strategy based on transient odour-selective central processing, which allows them to avoid the risk-taking, energy-consuming search for females and delay re-mating until the next night for a potential new ejaculate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.