Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochimica et Cosmochimica Acta, Elsevier, 2007, 71 (23) , selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe 2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (x-ray absorption near-edge spectroscopy) and EXAFS (extended x-ray absorption finestructure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as
Xenon capsule: A smart 129Xe NMR‐based sensor of Zn2+ ions for magnetic resonance imaging (MRI) is proposed. The resonance frequency of xenon encapsulated in a cryptophane that bears a nitrilotriacetic ligand moiety varies when Zn2+ ions are present in solution (see picture). With hyper‐polarized gas, such a construct enables detection of 100 nM zinc in one xenon batch, a threshold 300 times lower than achieved with gadolinium chelates.
Diethylenetriaminepentaacetic acid (DTPA) is currently still the only known chelating drug that can be used for decorporation of internalized plutonium (Pu) and americium (Am). It is generally assumed that chelation occurs only in biological fluids, thus preventing Pu/Am deposition in target tissues. We postulate that actinide chelation may also occur inside cells by a mechanism called "intracellular chelation". To test this hypothesis, rats were given DTPA either prior to (termed "prophylactic" treatment) or belatedly after (termed "delayed" treatment) Pu/Am injection. DTPA decorporation efficacy was systematically tested for both plutonium and americium. Both prophylactic and delayed DTPA elicited marked decreases in liver Pu/Am. These results can be explained by chelation within subcellular compartments where DTPA efficacy increased as a function of a favorable intracellular DTPA-to-actinide molar ratio. The efficacy of intracellular chelation of liver actinides decreased with the delay of treatment. This is probably explained by progressive actinide binding to the high-affinity ligand ferritin followed by migration to lysosomes. Intracellular chelation was reduced as the gap between prophylactic treatment and contamination increased. This may be explained by the reduction of the intracellular DTPA pool, which declined exponentially with time. Skeletal Pu/Am was also reduced by prophylactic and delayed DTPA treatments. This decorporation of bone actinides may mainly result from extracellular chelation on bone surfaces. This work provides converging evidence for the involvement of an intracellular component of DTPA action in the decorporation process. These results may help to improve the interpretation of biological data from DTPA-treated contamination cases and could be useful to model DTPA therapy regimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.