An international Intercomparison of 3D Radiation Codes (I3RC) underscores the vast progress of recent years, but also highlights the challenges ahead for routine implementation in remote sensing and global climate modeling applications.
Modeling atmospheric and oceanic processes is one of the most important methods of the earth sciences for understanding the interactions of the various components of the surface-atmosphere system and predicting future weather and climate states. Great leaps in the availability of computing power at continuously decreasing costs have led to widespread popularity of computer models for research and operational applications. As part of routine scientific work, output from models built for AFFILIATIONS: CAHALAN-NASA
Abstract. An empirical model of the vertical profiles of aerosol optical characteristics is described. This model was developed based on data acquired from multi-year airborne sensing of optical and microphysical characteristics of the tropospheric aerosol over West Siberia. The main initial characteristics for the creation of the model were measurement data of the vertical profiles of the aerosol angular scattering coefficients in the visible wavelength range, particle size distribution functions and mass concentrations of black carbon (BC). The proposed model allows us to retrieve the aerosol optical and radiative characteristics in the visible and near-IR wavelength range, using the season, air mass type and time of day as input parameters. The columnar single scattering albedo and asymmetry factor of the aerosol scattering phase function, calculated using the average vertical profiles, are in good agreement with data from the AERONET station located in Tomsk.For solar radiative flux calculations, this empirical model has been tested for typical summer conditions. The available experimental database obtained for the regional features of West Siberia and the model developed on this basis are shown to be sufficient for performing these calculations.
Abstract. Microphysical and optical properties of aerosol were studied during a mega-fire event in summer 2012 over Siberia using ground-based measurements of spectral solar radiation at the AERONET site in Tomsk and satellite observations. The data were analysed using multi-year (2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013) measurements of aerosol characteristics under background conditions and for less intense fires, differing in burning biomass type, stage of fire, remoteness from observation site, etc. ("ordinary" smoke). In June-August 2012, the average aerosol optical depth (AOD, 500 nm) had been 0.95 ± 0.86, about a factor of 6 larger than background values (0.16 ± 0.08), and a factor of 2.5 larger than in ordinary smoke. The AOD values were extremely high on 24-28 July and reached 3-5. A comparison with satellite observations showed that ground-based measurements in the region of Tomsk not only reflect the local AOD features, but are also characteristic for the territory of Western Siberia as a whole. Single scattering albedo (SSA, 440 nm) in this period ranged from 0.91 to 0.99 with an average of ∼ 0.96 in the entire wavelength range of 440-1020 nm. The increase in absorptance of aerosol particles (SSA(440 nm) = 0.92) and decrease in SSA with wavelength observed in ordinary smoke agree with the data from multi-year observations in analogous situations in the boreal zone of USA and Canada. Volume aerosol size distribution in extreme and ordinary smoke had a bimodal character with significant prevalence of finemode particles, but in summer 2012 the mean median radius and the width of the fine-mode distribution somewhat increased. In contrast to data from multi-year observations, in summer 2012 an increase in the volume concentration and median radius of the coarse mode was observed with growing AOD.The calculations of the average radiative effects of smoke and background aerosol are presented. Compared to background conditions and ordinary smoke, under the extreme smoke conditions the cooling effect of aerosol considerably intensifies: direct radiative effects (DRE) at the bottom (BOA) and at the top of the atmosphere (TOA) are −13, −35, and −60 W m −2 and −5, −14, and −35 W m −2 respectively. The maximal values of DRE were observed on 27 July (AOD(500 nm) = 3.5), when DRE(BOA) reached −150 W m −2 , while DRE(TOA) and DRE of the atmosphere were −75 W m −2 . During the fire event in summer 2012 the direct radiative effect efficiency varied in range: at the BOA it was −80-−40 W m −2 , at the TOA it was −50-−20 W m −2 and in the atmosphere it was −35-−20 W m −2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.