Adenovirus-mediated gene transfer may hold much promise in the treatment of human cancer. However, concerns regarding vector dissemination beyond the target tissue, particularly with replication-competent viruses, require an evaluation of the persistence of viral infection in collateral tissue and vector-associated toxicities. In addition, for indications such as prostate cancer, the proximity of the point of viral administration to organs of the male reproductive system raises concerns regarding inadvertent germ-line transmission of genes carried by the virus. To address these concerns, the biodistribution, persistence, toxicity, and potential of germ-line transmission of a replication-competent adenovirus (Ad5-CD/TKrep) following intraprostatic administration in the mouse was examined. Ad5-CD/TKrep (10(10) vp, 5 x 10(11) vp/kg) was injected intraprostatically on Day 1 of the study and its presence in the major organs of the male urogenital tract (prostate, testes, seminal vesicles, and urinary bladder) and liver was determined on Days 8 and 29. For comparison, a parallel group of animals was injected with the same dose of a related replication-defective Ad5-FGNR virus. To evaluate germ-line transmission, Ad5-CD/TKrep-injected males were mated to females on Days 8 and 29 and resulting embryos were examined for AdS-CD/TKrep viral DNA. Ad5-CD/TKrep viral DNA was detected in all major organs of the adult male urogenital tract and liver 7 and 28 Days postinjection. Interestingly, relative to the replication-defective Ad5-FGNR adenovirus, the replication-competent Ad5-CD/TKrep virus accumulated to a much greater level (approximately 300-fold) and persisted for a longer period of time in prostate, testes, and liver. This difference could not be explained on the basis of differences in viral infectivity, suggesting that the AdS-CD/TKrep virus may be capable of replicating in mouse tissues in vivo. In vitro infection of six mouse cell lines representing prostate, testes, and liver demonstrated that the Ad5-CD/TKrep virus was indeed capable of replicating in these mouse cell types, albeit with reduced efficiencies relative to human cells. Despite the fact that the Ad5-CD/TKrep vector persisted in the adult male gonads and may have replicated in vivo, we observed no evidence of germ-line transmission in 149 offspring examined. To evaluate the toxicity of combining Ad5-CD/TKrep viral therapy with CD/5-FC and HSV-1 TK/GCV suicide gene therapies as a prerequisite for a human trial, an escalating dose (10(8), 10(9), 10(10) vp) of Ad5-CD/TKrep was administered intraprostatically followed by 7 days of 5-FC and GCV double prodrug therapy. Although the virus persisted in the mouse urogenital tract and liver for up to 28 days postinjection, most of the toxicities observed were expected, minimal, and self-limiting. These results lead us to believe that intraprostatic administration of the Ad5-CD/TKrep virus to humans concomitant with double suicide gene therapy will be associated with acceptable toxicities and will not result in ve...
The PTP4A3 gene is highly expressed in human colon cancer and often associates with enhanced metastatic potential. Genetic disruption of the mouse Ptp4a3 gene reduces the frequency of colon tumor formation in mice treated in a colitis-associated cancer model. In the current study, we have examined the role of Ptp4a3 in the tumor-initiating cell population of mouse colon tumors using an in vitro culture system. Tumors generated in vivo following AOM/DSS treatment were isolated, dissociated, and expanded on a feeder layer resulting in a CD133+ cell population, which expressed high levels of Ptp4a3. Tumor cells deficient for Ptp4a3 exhibited reduced clonogenicity and growth potential relative to WT cells as determined by limiting dilution analysis. Importantly, expanded tumor cells from WT mice readily formed secondary tumors when transplanted into nude mice, while tumor cells without Ptp4a3 expression failed to form secondary tumors and thus were not tumorigenic. These results demonstrate that Ptp4a3 contributes to the malignant phenotype of tumor-initiating cells and supports its role as a potential therapeutic target to inhibit tumor self-renewal and metastasis.
Growth and morphogenesis of the prostate involves mesenchymal-epithelial interactions. Transforming growth factor-beta 1 (TGF-beta1) is one growth factor that may play a role in these paracrine interactions. We have localized TGF-beta1 by molecular and immunohistochemical analysis in the developing mouse prostate. Accumulations of TGF-beta1 protein were localized in the mesenchyme surrounding ductules in fetal and neonatal prostate. Previous studies in the mouse prostate reconstitution (MPR) model system have localized accumulations of TGF-beta1 to regions of oncogene-induced abnormalities. In surgically excised adult human prostate tissues, localized accumulations of TGF-beta1 are associated with prostate cancer and benign prostatic hyperplasia (BPH). Intracellular TGF-beta1 was more often associated with stromal cells in BPH and with neoplastic epithelial cells in prostate cancer. The production and accumulation of TGF-beta1 appears to involve interactions between mesenchymal and epithelial cells. Further experimental studies may clarify the relationships between TGF-beta1 and abnormal prostatic growth.
These preliminary data suggest that plasma cholinesterase levels do not change over a 7-hour period as a result of cocaine administration, but may increase during a period of inpatient study. Such an increase could potentially influence the pharmacokinetics or effects of cocaine studied in an inpatient setting and may give insight into the etiology of the observed low-plasma cholinesterase activity in cocaine users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.