The solvability of the boundary value problem for pseudohyperbolic equations
of the third order is investigated. For the problem under study, an
algorithm for finding an approximate solution is proposed and sufficient
conditions for unique solvability are established.
In a rectangular domain, we consider a boundary value problem periodic in one variable for a system of partial differential equations of hyperbolic type. Introducing a new unknown function, this problem is reduced to an equivalent boundary value problem for an ordinary differential equation with an integral condition. Based on the parametrization method, new approaches to finding an approximate solution to an equivalent problem are proposed and its convergence is proved. This made it possible to establish conditions for the existence of a unique solution of a semiperiodic boundary value problem for a system of second-order hyperbolic equations.
In this paper, by means of a change of variables, a nonlinear semi-periodic boundary value problem for the Goursat equation is reduced to a linear gravity problem for hyperbolic equations. Reintroducing a new function, the obtained problem is reduced to a family of boundary value problems for ordinary differential equations and functional relations. When solving a family of boundary value problems for ordinary differential equations, the parameterization method is used. The application of this approach made it possible to establish the coefficients of the unique solvability of the semi-periodic problem for the Goursat equation and to propose constructive algorithms for finding an approximate solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.