We present a new instrument for spin echo small angle neutron scattering (SESANS) developed at the Low Energy Neutron Source (LENS) at Indiana University. A description of the various instrument components is given along with the performance of these components. At the heart of the instrument are a series of resistive coils to encode the neutron trajectory into the neutron polarisation. These are shown to work well over a broad wavelength range of neutron wavelengths. Neutron polarisation analysis is accomplished using a continuously-operating neutron spin filter polarised by Rb-spin exchange optical pumping of 3 He. We describe the performance of the analyser along with a study of the 3 He polarisation stability and its implications for SESANS measurements. Scattering from silica Stöber particles is investigated and agrees with samples run on similar instruments.
We describe a simple, compact device for spherical neutron polarimetry measurements at small neutron scattering angles. The device consists of a sample chamber with very low (<0.01 G) magnetic field flanked by regions within which the neutron polarization can be manipulated in a controlled manner. This allows any selected initial and final polarization direction of the neutrons to be obtained. We have constructed a prototype device using high-Tc superconducting films and mu-metal to isolate regions with different magnetic fields and tested device performance in transmission geometry. Finite-element methods were used to simulate the device’s field profile and these have been verified by experiment using a small solenoid as a test sample. Measurements are reported using both monochromatic and polychromatic neutron sources. The results show that the device is capable of extracting sample information and distinguishing small angular variations of the sample magnetic field. As a more realistic test, we present results on the characterization of a 10 μm thick Permalloy film in zero magnetic field, as well as its response to an external magnetic field.
In the present study, we report a new setup for polarized neutron imaging at the ORNL High Flux Isotope Reactor CG-1D beamline using an in situ He polarizer and analyzer. This development is very important for extending the capabilities of the imaging instrument at ORNL providing a polarized beam with a large field-of-view, which can be further used in combination with optical devices like Wolter optics, focusing guides, or other lenses for the development of microscope arrangement. Such a setup can be of advantage for the existing and future imaging beamlines at the pulsed neutron sources. The first proof-of-concept experiment is performed to study the ferromagnetic phase transition in the FePt sample. We also demonstrate that the polychromatic neutron beam in combination with in situ He cells can be used as the initial step for the rapid measurement and qualitative analysis of radiographs.
Measurement of the injecting time of picosecond laser in indirect-drive integrated fast ignition experiments using an x-ray streak camera Review of Scientific Instruments 90, 033504 (2019);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.