1,3-beta-D-glucan synthase [also known as beta(1-->3) glucan synthase] is a multi-enzyme complex that catalyzes the synthesis of 1,3-beta-linked glucan, a major structural component of the yeast cell wall. Temperature-sensitive mutants in the essential Rho-type guanosine triphosphatase (GTPase), Rho1p, displayed thermolabile glucan synthase activity, which was restored by the addition of recombinant Rho1p. Glucan synthase from mutants expressing constitutively active Rho1p did not require exogenous guanosine triphosphate for activity. Rho1p copurified with beta(1-->3)glucan synthase and associated with the Fks1p subunit of this complex in vivo. Both proteins were localized predominantly at sites of cell wall remodeling. Therefore, it appears that Rho1p is a regulatory subunit of beta(1-->3)glucan synthase.
The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two‐hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP‐bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature‐sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p.
1,3-beta-D-Glucan synthase of Saccharomyces cerevisiae was solubilized and purified up to 700-fold by product entrapment. The specific activity of the partially purified enzyme was around 4 mumol glucose incorporated.min-1.mg protein-1. In SDS/PAGE, enrichment of a 200-kDa protein was clearly observed in parallel with the increase in specific activity. mAbs that could immunoprecipitate the 1,3-beta-D-glucan synthase activity were isolated, and some of them also recognized this 200-kDa protein in the Western blot. Internal amino acid sequences of this 200-kDa protein were determined after lysyl endopeptidase digestion. With the information of these amino acid sequences, we cloned two genes, GSC1 and GSC2 (glucan synthase of S. cerevisiae 1 and 2), which are very similar to each other (88% at the amino acid level); hydropathy profiles of both proteins suggest that these genes encode integral membrane proteins which can be assumed to have approximately 16 transmembrane domains. Disruption of each gene was not lethal, but disruption of both genes was lethal. The 1,3-beta-D-glucan synthase activities of membrane and partially purified enzyme of gsc1::URA3 cells were significantly lower than those of the wild-type and gsc2::LEU2 cells.
Saccharomyces cerevisiae GSC1 (also called FKS1) and GSC2 (also called FKS2) have been identified as the genes for putative catalytic subunits of -1,3-glucan synthase. We have cloned three Candida albicans genes, GSC1, GSL1, and GSL2, that have significant sequence homologies with S. cerevisiae GSC1/FKS1, GSC2/FKS2, and the recently identified FKSA of Aspergillus nidulans at both nucleotide and amino acid levels. Like S. cerevisiae Gsc/Fks proteins, none of the predicted products of C. albicans GSC1, GSL1, or GSL2 displayed obvious signal sequences at their N-terminal ends, but each product possessed 10 to 16 potential transmembrane helices with a relatively long cytoplasmic domain in the middle of the protein. Northern blotting demonstrated that C. albicans GSC1 and GSL1 but not GSL2 mRNAs were expressed in the growing yeastphase cells. Three copies of GSC1 were found in the diploid genome of C. albicans CAI4. Although we could not establish the null mutation of C. albicans GSC1, disruption of two of the three GSC1 alleles decreased both GSC1 mRNA and cell wall -glucan levels by about 50%. The purified C. albicans -1,3-glucan synthase was a 210-kDa protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all sequences determined with peptides obtained by lysyl endopeptidase digestion of the 210-kDa protein were found in the deduced amino acid sequence of C. albicans Gsc1p. Furthermore, the monoclonal antibody raised against the purified -1,3-glucan synthase specifically reacted with the 210-kDa protein and could immunoprecipitate -1,3-glucan synthase activity. These results demonstrate that C. albicans GSC1 is the gene for a subunit of -1,3-glucan synthase.
1,3-beta-D-Glucan synthase of Saccharomyces cerevisiae was solubilized and purified up to 700-fold by product entrapment. The specific activity of the partially purified enzyme was around 4 mumol glucose incorporated.min-1.mg protein-1. In SDS/PAGE, enrichment of a 200-kDa protein was clearly observed in parallel with the increase in specific activity. mAbs that could immunoprecipitate the 1,3-beta-D-glucan synthase activity were isolated, and some of them also recognized this 200-kDa protein in the Western blot. Internal amino acid sequences of this 200-kDa protein were determined after lysyl endopeptidase digestion. With the information of these amino acid sequences, we cloned two genes, GSC1 and GSC2 (glucan synthase of S. cerevisiae 1 and 2), which are very similar to each other (88% at the amino acid level); hydropathy profiles of both proteins suggest that these genes encode integral membrane proteins which can be assumed to have approximately 16 transmembrane domains. Disruption of each gene was not lethal, but disruption of both genes was lethal. The 1,3-beta-D-glucan synthase activities of membrane and partially purified enzyme of gsc1::URA3 cells were significantly lower than those of the wild-type and gsc2::LEU2 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.