Modern Holter devices are very trendy tools used in medicine, research, or sport. They monitor a variety of human physiological or pathophysiological signals. Nowadays, Holter devices have been developing very fast. New innovative products come to the market every day. They have become smaller, smarter, cheaper, have ultra-low power consumption, do not limit everyday life, and allow comfortable measurements of humans to be accomplished in a familiar and natural environment, without extreme fear from doctors. People can be informed about their health and 24/7 monitoring can sometimes easily detect specific diseases, which are normally passed during routine ambulance operation. However, there is a problem with the reliability, quality, and quantity of the collected data. In normal life, there may be a loss of signal recording, abnormal growth of artifacts, etc. At this point, there is a need for multiple sensors capturing single variables in parallel by different sensing methods to complement these methods and diminish the level of artifacts. We can also sense multiple different signals that are complementary and give us a coherent picture. In this article, we describe actual interesting multi-sensor principles on the grounds of our own long-year experiences and many experiments.
The whole world is currently focused on COVID-19, which causes considerable economic and social damage. The disease is spreading rapidly through the population, and the effort to stop the spread is entirely still failing. In our article, we want to contribute to the improvement of the situation. We propose a tracking system that would identify affected people with greater accuracy than medical staff can. The main goal was to design hardware and construct a device that would track anonymous risky contacts in areas with a highly concentrated population, such as schools, hospitals, large social events, and companies. We have chosen a 2.4 GHz proprietary protocol for contact monitoring and mutual communication of individual devices. The 2.4 GHz proprietary protocol has many advantages such as a low price and higher resistance to interference and thus offers benefits. We conducted a pilot experiment to catch bugs in the system. The device is in the form of a bracelet and captures signals from other bracelets worn at a particular location. In case of contact with an infected person, the alarm is activated. This article describes the concept of the tracking system, the design of the devices, initial tests, and plans for future use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.