Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that was first identified in 1978 as a quantitatively minor component of suspension-cultured sycamore cell walls. Subsequent studies have shown that RG-II is present in the primary walls of angiosperms, gymnosperms, lycophytes, and pteridophytes and that its glycosyl sequence is conserved in all vascular plants examined to date. This is remarkable because RG-II is composed of at least 12 different glycosyl residues linked together by more than 20 different glycosidic linkages. However, only a few of the genes and proteins required for RG-II biosynthesis have been identified. The demonstration that RG-II exists in primary walls as a dimer that is covalently cross-linked by a borate diester was a major advance in our understanding of the structure and function of this pectic polysaccharide. Dimer formation results in the cross-linking of the two homogalacturonan chains upon which the RG-II molecules are constructed and is required for the formation of a three-dimensional pectic network in muro. This network contributes to the mechanical properties of the primary wall and is required for normal plant growth and development. Indeed, changes in wall properties that result from decreased borate cross-linking of pectin may lead to many of the symptoms associated with boron deficiency in plants.
The Great East Japan Earthquake (GEJE) and resulting tsunami of March 11, 2011 gave rise to devastating damage on the Pacific coast of the Tohoku region. The Tohoku Medical Megabank Project (TMM), which is being conducted by Tohoku University Tohoku Medical Megabank Organization (ToMMo) and Iwate Medical University Iwate Tohoku Medical Megabank Organization (IMM), has been launched to realize creative reconstruction and to solve medical problems in the aftermath of this disaster. We started two prospective cohort studies in Miyagi and Iwate Prefectures: a population-based adult cohort study, the TMM Community-Based Cohort Study (TMM CommCohort Study), which will recruit 80 000 participants, and a birth and three-generation cohort study, the TMM Birth and Three-Generation Cohort Study (TMM BirThree Cohort Study), which will recruit 70 000 participants, including fetuses and their parents, siblings, grandparents, and extended family members. The TMM CommCohort Study will recruit participants from 2013 to 2016 and follow them for at least 5 years. The TMM BirThree Cohort Study will recruit participants from 2013 to 2017 and follow them for at least 4 years. For children, the ToMMo Child Health Study, which adopted a cross-sectional design, was also started in November 2012 in Miyagi Prefecture. An integrated biobank will be constructed based on the two prospective cohort studies, and ToMMo and IMM will investigate the chronic medical impacts of the GEJE. The integrated biobank of TMM consists of health and clinical information, biospecimens, and genome and omics data. The biobank aims to establish a firm basis for personalized healthcare and medicine, mainly for diseases aggravated by the GEJE in the two prefectures. Biospecimens and related information in the biobank will be distributed to the research community. TMM itself will also undertake genomic and omics research. The aims of the genomic studies are: 1) to construct an integrated biobank; 2) to return genomic research results to the participants of the cohort studies, which will lead to the implementation of personalized healthcare and medicine in the affected areas in the near future; and 3) to contribute the development of personalized healthcare and medicine worldwide. Through the activities of TMM, we will clarify how to approach prolonged healthcare problems in areas damaged by large-scale disasters and how useful genomic information is for disease prevention.
Intercellular attachment is an essential process in the morphogenesis of multicellular organisms. A unique mutant, nolac-H18 (nonorganogenic callus with loosely attached cells), generated by T-DNA transformation using leaf-disk cultures of haploid Nicotiana plumbaginifolia, lost the ability to form tight intercellular attachments and adventitious shoots. The gene tagged with T-DNA, named NpGUT1 (glucuronyltransferase 1), was similar to the gene for the catalytic domains of animal glucuronyltransferases and was expressed predominantly in shoot and root apical meristems. The transformation of NpGUT1 complemented the nolac-H18 mutation, and the expression of antisense NpGUT1 RNA produced crumbled shoots. The mutation caused defects in the glucuronic acid of rhamnogalacturonan II of pectin, which drastically reduced the formation of borate cross-linking of rhamnogalacturonan II. NpGUT1, which encodes a unique glucuronyltransferase, is a glycosyltransferase gene identified in pectin biosynthesis and is essential for intercellular attachment in plant meristems and tissues. S patially and temporally controlled intercellular attachment and communication are indispensable for the organization of plant tissues, making them critical for normal development and morphogenesis in every multicellular organism. Plant cell walls are composed primarily of cellulose microfibrils, hemicellulose, pectic polysaccharides, and small amounts of structural proteins (1-3). Pectin is believed to be involved in intercellular attachment because it is localized mainly in the primary cell wall, middle lamella, and cell corners. Pectin consists mostly of three structurally well-characterized polysaccharides: homogalacturonans (HGs) and highly branched rhamnogalacturonans I and II (RG-I and RG-II). Compared with cellulose and hemicellulose, little is known about the synthesis and assembly of pectins. The biosynthesis of HG, RG-I, and RG-II likely requires at least 41 unique glycosyltransferases (1). The activities of several transferases involved in the biosynthesis of pectin have been identified (1). However, none of these enzymes have been purified, and their genes have never been identified.Recently, we established a system for producing mutants called nolac (nonorganogenic callus with loosely attached cells) by T-DNA transformation, which involves in vitro cultures of leaf disks of haploid Nicotiana plumbaginifolia (4). These mutants are defective in intercellular attachment, which results in the failure of organogenesis. Haploid N. plumbaginifolia plants (5) are suitable for generating and studying such mutants, because mutations have a direct effect on phenotype and because cells with embryo-lethal mutations can be maintained in tissue culture as unorganized callus, which enables us to analyze mutant cell walls. We identified 199 lines of callus with loosely attached cells from cultures of 2,970 leaf disks that had been transformed with T-DNA. Although, only 25 of these continued to grow on the medium, nolac-H18 had a growth rate that was s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.