The diterpene pleuromutilin is a ribosome-targeting antibiotic isolated from basidiomycete fungi, such as Clitopilus pseudo-pinsitus. The functional characterization of all biosynthetic enzymes involved in pleuromutilin biosynthesis is reported and a biosynthetic pathway proposed. In vitro enzymatic reactions and mutational analysis revealed that a labdane-related diterpene synthase, Ple3, catalyzed two rounds of cyclization from geranylgeranyl diphosphate to premutilin possessing a characteristic 5-6-8-tricyclic carbon skeleton. Biotransformation experiments utilizing Aspergillus oryzae transformants possessing modification enzyme genes allowed the biosynthetic pathway from premutilin to pleuromutilin to be proposed. The present study sets the stage for the enzymatic synthesis of natural products isolated from basidiomycete fungi, which are a prolific source of structurally diverse and biologically active terpenoids.
To obtain insight into how the cyclization pathway is controlled, the mechanism of diterpene synthase reactions (the putative phomactatriene synthase and taxadiene synthases) involving the same intermediate was investigated in detail. The mechanism of the initial transformation of GGDP to verticillen-12-yl cation (A+) was proposed based on the labelling pattern of phomactatriene (9a) obtained in the feeding experiments with 13C-labelled acetates. To obtain information on the reaction pathway of A+ to 9a and taxadiene, reactions of verticillol with various acids were conducted. Structural determination of products allowed us to propose a reaction pathway via cations A+, D+, E+, F+ and G+. Identification of hydrocarbons in mycelial extracts of phomactin-producing fungus supported the proposed reaction mechanism. Based on the results of ab initio calculations for highly flexible cation intermediates, a mechanism is proposed.
Mutilin (4) and deoxy analogues 2 and 3 are biosynthetic precursors of pleuromutilin (1) in the later stage of biosynthesis. Precursors 2 and 3 are required for studies on the oxygenation steps in biosynthesis, and were synthesized from readily available 1 via 4 by deoxygenation of the hydroxy groups. Feeding experiments with the 2 H-labeled precursors confirmed their microbial conversion into 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.